Meike König

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689397/publications.pdf

Version: 2024-02-01

759233 794594 22 374 12 19 h-index citations g-index papers 22 22 22 594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular Changes in Vaporâ€Based Polymer Thin Films Assessed by Characterization of Swelling Properties of Amineâ€Functionalized Poly―p â€xylylene. Macromolecular Chemistry and Physics, 2020, 221, 2000213.	2.2	O
2	Inverse Vulcanization of Styrylethyltrimethoxysilane–Coated Surfaces, Particles, and Crosslinked Materials. Angewandte Chemie - International Edition, 2020, 59, 18639-18645.	13.8	33
3	Light-Switchable One-Dimensional Photonic Crystals Based on MOFs with Photomodulatable Refractive Index. Journal of Physical Chemistry Letters, 2019, 10, 6626-6633.	4.6	17
4	In-situ-Investigation of Enzyme Immobilization on Polymer Brushes. Frontiers in Chemistry, 2019, 7, 101.	3.6	14
5	Editorial: Polymer Surface Chemistry: Biomolecular Engineering and Biointerfaces. Frontiers in Chemistry, 2019, 7, 271.	3.6	2
6	Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. Langmuir, 2019, 35, 3479-3489.	3.5	46
7	Salt Sensitivity of the Thermoresponsive Behavior of PNIPAAm Brushes. Langmuir, 2018, 34, 2448-2454.	3.5	13
8	Polymer Brushes, Hydrogels, Polyelectrolyte Multilayers: Stimuli-Responsivity and Control of Protein Adsorption. Springer Series in Surface Sciences, 2018, , 115-143.	0.3	1
9	Quartz crystal microbalance with coupled spectroscopic ellipsometry-study of temperature-responsive polymer brush systems. Applied Surface Science, 2017, 421, 843-851.	6.1	31
10	pHâ€Responsive Aminomethyl Functionalized Poly(<i>p</i> â€xylylene) Coatings by Chemical Vapor Deposition Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1600521.	2.2	8
11	Defects as Color Centers: The Apparent Color of Metal–Organic Frameworks Containing Cu ²⁺ -Based Paddle-Wheel Units. ACS Applied Materials & Diterfaces, 2017, 9, 37463-37467.	8.0	60
12	Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization. Biomacromolecules, 2017, 18, 3089-3098.	5.4	7
13	Nanotopographical control of surfaces using chemical vapor deposition processes. Beilstein Journal of Nanotechnology, 2017, 8, 1250-1256.	2.8	7
14	Vapor-based polymers: from films to nanostructures. Beilstein Journal of Nanotechnology, 2017, 8, 2219-2220.	2.8	5
15	Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity. Colloids and Surfaces B: Biointerfaces, 2016, 146, 737-745.	5.0	32
16	The Distribution of Immobilized Platinum and Palladium Nanoparticles within Poly(2â€vinylpyridine) Brushes. Macromolecular Chemistry and Physics, 2014, 215, 1679-1685.	2.2	4
17	Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures. Analytical and Bioanalytical Chemistry, 2014, 406, 7233-7242.	3.7	20
18	Nanocomposite coatings with stimuli-responsive catalytic activity. RSC Advances, 2014, 4, 17579-17586.	3.6	16

MEIKE KöNIG

#	Article	IF	CITATION
19	Slanted Columnar Thin Films Prepared by Glancing Angle Deposition Functionalized with Polyacrylic Acid Polymer Brushes. Journal of Physical Chemistry C, 2013, 117, 13971-13980.	3.1	29
20	Catalytically Active Nanocomposites Based on Palladium and Platinum Nanoparticles in Poly(2â€vinylpyridine) Brushes. Macromolecular Chemistry and Physics, 2013, 214, 2301-2311.	2.2	18
21	In Situ Synthesis of Palladium Nanoparticles in Polymer Brushes Followed by QCMâ€D Coupled with Spectroscopic Ellipsometry. Particle and Particle Systems Characterization, 2013, 30, 931-935.	2.3	7
22	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	6.7	4