Roland Brémond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689344/publications.pdf

Version: 2024-02-01

623188 676716 39 566 14 22 citations g-index h-index papers 39 39 39 560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A tone-mapping operator for road visibility experiments. ACM Transactions on Applied Perception, 2008, 5, 1-24.	1.2	109
2	A model-driven approach to estimate atmospheric visibility with ordinary cameras. Atmospheric Environment, 2011, 45, 5316-5324.	1.9	42
3	The effect of the driving activity on target detection as a function of the visibility level: Implications for road lighting. Transportation Research Part F: Traffic Psychology and Behaviour, 2010, 13, 115-128.	1.8	31
4	Enhanced fog detection and free-space segmentation for car navigation. Machine Vision and Applications, 2014, 25, 667-679.	1.7	30
5	Gaze behavior when approaching an intersection: Dwell time distribution and comparison with a quantitative prediction. Transportation Research Part F: Traffic Psychology and Behaviour, 2015, 35, 60-74.	1.8	29
6	Target visibility level and detection distance on a driving simulator. Lighting Research and Technology, 2013, 45, 76-89.	1.2	27
7	Leftward attentional bias in a simulated driving task. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 20, 147-153.	1.8	22
8	Alerting the drivers about road signs with poor visual saliency. , 2009, , .		21
9	Measuring the effect of the rainfall on the windshield in terms of visual performance. Accident Analysis and Prevention, 2014, 63, 83-88.	3.0	21
10	Effects of the viewing context on target detection. Implications for road lighting design. Applied Ergonomics, 2010, 41, 461-468.	1.7	20
11	Effect of Task and Eccentricity of the Target on Detection Thresholds in Mesopic Vision: Implications for Road Lighting. Human Factors, 2008, 50, 712-721.	2.1	17
12	Drivers' visual attention: A field study at intersections. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 69, 206-221.	1.8	16
13	Discriminating cognitive processes with eye movements in a decision-making driving task Journal of Eye Movement Research, 2014, 7, .	0.5	16
14	Estimating Meteorological Visibility Using Cameras: A Probabilistic Model-Driven Approach. Lecture Notes in Computer Science, 2011, , 243-254.	1.0	15
15	Saliency Maps of High Dynamic Range Images. Lecture Notes in Computer Science, 2012, , 118-130.	1.0	15
16	Visual Performance Models in Road Lighting: A Historical Perspective. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 212-241.	1.5	14
17	Photometric measurements for visibility level computations. Lighting Research and Technology, 2011, 43, 119-128.	1.2	13
18	All-Weather Vision for Automotive Safety: Which Spectral Band?. Lecture Notes in Mobility, 2019, , 3-15.	0.2	12

#	Article	IF	Citations
19	A high dynamic range rendering pipeline forÂinteractiveÂapplications. Visual Computer, 2010, 26, 533-542.	2.5	11
20	Quantitative model of the driver's reaction time during daytime fog – application to a head up displayâ€based advanced driver assistance system. IET Intelligent Transport Systems, 2015, 9, 375-381.	1.7	11
21	Vision models for image quality assessment: one is not enough. Journal of Electronic Imaging, 2010, 19, 043004.	0.5	9
22	Visibility and discomfort glare of LED road studs. Lighting Research and Technology, 2015, 47, 945-963.	1.2	8
23	Driving at night with a cataract: Risk homeostasis?. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 53, 61-73.	1.8	8
24	Design and evaluation of a user-centered interface to model scenarios on driving simulators. Transportation Research Part C: Emerging Technologies, 2015, 50, 3-12.	3.9	7
25	Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society. Scientific World Journal, The, 2015, 2015, 1-11.	0.8	6
26	Approche psychologique de l'activité de traversée des piétons. Implications pour la simulation. Recherche - Transports - Securite, 2008, 28, 265-279.	0.1	5
27	Saliency maps of high dynamic range images. , 2009, , .		4
28	Evaluation of tone mapping operators in night-time virtual worlds. Virtual Reality, 2013, 17, 253-262.	4.1	4
29	High Dynamic Range Displays improve the realism of motion cues in night driving simulators. Displays, 2018, 52, 30-39.	2.0	4
30	A unified CSF-based framework for edge detection and edge visibility. , 2011, , .		3
31	Discomfort Glare from Several Sources: A Formula for Outdoor Lighting. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 108-124.	1.5	3
32	Single Image Atmospheric Veil Removal Using New Priors for Better Genericity. Atmosphere, 2021, 12, 772.	1.0	3
33	Drivers with limited perception: model and application to traffic simulation. Recherche - Transports - Securite, 2014, 2014, 49-63.	0.1	3
34	Perceptual Hysteresis Thresholding: Towards Driver Visibility Descriptors. , 2007, , .		2
35	The shape of road markings for visibility computations. Proceedings of the Institution of Civil Engineers: Transport, 2022, 175, 275-283.	0.3	2
36	Designing a tone mapping algorithm for road visibility experiments. , 2005, , .		1

#	Article	IF	CITATIONS
37	Discomfort Glare from a Cyclic Source in Outdoor Lighting Conditions. LEUKOS - Journal of Illuminating Engineering Society of North America, 0 , , 1 - 16 .	1.5	1
38	Single Image Atmospheric Veil Removal Using New Priors. , 2021, , .		1
39	Interactive high dynamic range rendering for virtual reality applications. , 2009, , .		O