Animesh Jha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8689243/publications.pdf

Version: 2024-02-01

109	3,323	31 h-index	55
papers	citations		g-index
125	125	125	2361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adhesives for treatment of bone fractures: A review of the state-of-the art. Injury, 2022, 53, S20-S25.	1.7	10
2	Inorganic Glasses for Pulsed-Laser Based Waveguide Engineering for Integrated Optics., 2022,,.		1
3	Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances. Injury, 2022, 53, S2-S12.	1.7	13
4	Accelerated Electro-Reduction of TiO2 to Metallic Ti in a CaCl2 Bath Using an Inert Intermetallic Anode. Journal of the Indian Institute of Science, 2022, 102, 127-137.	1.9	1
5	Effect of Yb3+ on the Structural and Visible to Near-Infrared Wavelength Photoluminescence Properties in Sm3+-Yb3+-Codoped Barium Fluorotellurite Glasses. Materials, 2022, 15, 3314.	2.9	5
6	Influence of the Alkali-promoted phase transformation in monazite for selective recovery of rare-oxides using deep eutectic solvents. Minerals Engineering, 2022, 182, 107564.	4.3	3
7	A novel reductive alkali roasting of chromite ores for carcinogen-free Cr6+-ion extraction of chromium oxide (Cr2O3) – A clean route to chromium product manufacturing!. Journal of Hazardous Materials, 2021, 403, 123589.	12.4	8
8	An Origami-Based Soft Robotic Actuator for Upper Gastrointestinal Endoscopic Applications. Frontiers in Robotics and Al, 2021, 8, 664720.	3.2	17
9	An investigation on hydrofluoric (HF) acid-free extraction for niobium oxide (Nb2O5) and tantalum oxide (Ta2O5) from columbite/tantalite concentrates using alkali reductive roasting. Minerals Engineering, 2021, 173, 107183.	4.3	11
10	A comparison of methods for the estimation of the enthalpy of formation of rare earth compounds. Physical Chemistry Chemical Physics, 2021, 23, 24273-24281.	2.8	9
11	Interrelationships between the structural, spectroscopic, and antibacterial properties of nanoscale (< 50Ânm) cerium oxides. Scientific Reports, 2021, 11, 20875.	3.3	12
12	Characterisation of spectroscopic and magneto-optical faraday rotation in Mn2+- doped CdS quantum dots in a silicate glass. Journal of Alloys and Compounds, 2020, 817, 152696.	5.5	13
13	Metabolite Identification of Helicobacter Pylori Supernatant Using Near-IR Raman Spectroscopy. , 2020, , .		O
14	Analysis of the osteogenic and mechanical characteristics of iron (Fe2+/Fe3+)-doped βâ€'calcium pyrophosphate. Materials Science and Engineering C, 2020, 115, 111053.	7. 3	13
15	Spectroscopic and Structural Properties of Yb3+-Doped and Undoped 2D-Mos2 Thin Films for Optoelectronic and Photonic Device Applications. , 2019, , .		O
16	Structural, Spectroscopic, and Excitonic Dynamic Characterization in Atomically Thin Yb ³⁺ â€Doped MoS ₂ , Fabricated by Femtosecond Pulsed Laser Deposition. Advanced Optical Materials, 2019, 7, 1900753.	7. 3	17
17	Near-IR Laser and Raman Spectroscopy of Colon Mucosal Tissues: A Comparative Study on Metabolite Characterisations for Early Diagnosis of Inflammation and Ulceration. , 2018, , .		O
18	Lasers Utilising Tellurite Glass-Based Gain Media. Springer Series in Materials Science, 2017, , 101-130.	0.6	8

#	Article	IF	CITATIONS
19	Towards sustainable processing of columbite group minerals: elucidating the relation between dielectric properties and physico-chemical transformations in the mineral phase. Scientific Reports, 2017, 7, 18016.	3.3	10
20	Fabrication of low-OH GeS <inf>2</inf> glasses and multimode fibres for mid-IR applications. , 2017, , .		0
21	Formation of Chromium-Containing Molten Salt Phase during Roasting of Chromite Ore with Sodium and Potassium Hydroxides. Journal for Manufacturing Science and Production, 2016, 16, 215-225.	0.1	6
22	Raman spectroscopy of endoscopic colonic biopsies from patients with ulcerative colitis to identify mucosal inflammation and healing. Biomedical Optics Express, 2016, 7, 2022.	2.9	23
23	Kinetics of hydrochloric acid leaching of niobium from TiO2 residues. International Journal of Mineral Processing, 2016, 157, 1-6.	2.6	25
24	Separation and recovery of critical metal ions using ionic liquids. Advances in Manufacturing, 2016, 4, 33-46.	6.1	71
25	Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy, 2016, 165, 213-226.	4.3	54
26	Alkali roasting of bomar ilmenite: rare earths recovery and physico-chemical changes. Open Chemistry, $2015,13,.$	1.9	20
27	Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping. Scientific Reports, 2015, 5, 14037.	3.3	21
28	Platform manufacturing technique for next generation integrated photonic components., 2015,,.		0
29	Doping silica beyond limits with laser plasma for active photonic materials. Optical Materials Express, 2015, 5, 2849.	3.0	14
30	Leaching studies of alkali roasted bomarilmenite and anatase during the processing of synthetic rutile. Hydrometallurgy, 2015, 152, 113-119.	4.3	7
31	Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching – an improved approach to process engineering. Green Chemistry, 2015, 17, 2059-2080.	9.0	53
32	Optical, optoelectronic and photonic materials and applications. Semiconductor Science and Technology, 2015, 30, 040301.	2.0	1
33	Engineering of a Ge–Te–Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products. Sensors and Actuators B: Chemical, 2015, 206, 159-169.	7.8	38
34	Low Temperature Sulphidization of Cu-Co SLAG in the Presence of Calcium Sulphide., 2015, , 105-113.		1
35	Characterization of Physico-Chemical Changes during the Alkali Roasting of Niobium and Tantalum Oxides., 2015,, 51-58.		0

Kinetic and Thermodynamic Analysis of the Reduction of Oxides of Cu and Co in a SiO2-CaO-(Al,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6

#	Article	lF	CITATIONS
37	Glass–polymer superlattice for integrated optics. Optical Engineering, 2014, 53, 071818.	1.0	4
38	Role of ion migrations in ultrafast laser written tellurite glass waveguides. Optics Express, 2014, 22, 15298.	3.4	34
39	Measurement of non-isothermal oxygen potentials in a Cu–Fe–Ca–S–O liquid during reduction of chalcopyrite in lime and carbon mixtures. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2014, 123, 21-28.	0.6	0
40	Femtosecond pulsed laser deposition of silicon thin films. Nanoscale Research Letters, 2013, 8, 272.	5.7	21
41	Erbiumâ€lonâ€Doped Tellurite Glass Fibers and Waveguides—Devices and Future Prospective: Part II. International Journal of Applied Glass Science, 2013, 4, 202-213.	2.0	8
42	Erbiumâ€lonâ€Doped Tellurite Glasss Fibers and Waveguides â€" Devices and Future Prospective: <scp>PART</scp> I. International Journal of Applied Glass Science, 2013, 4, 192-201.	2.0	4
43	Reduction of OH ^{â°'} ions in tellurite glasses using chlorine and oxygen gases. Journal of Materials Research, 2013, 28, 3226-3233.	2.6	13
44	Physical Chemistry of Roasting and Leaching Reactions for Chromium Chemical Manufacturing and Its Impact on the Environment — A Review. , 2013, , 225-236.		0
45	Active glass–polymer superlattice structure for photonic integration. Nanotechnology, 2012, 23, 225302.	2.6	11
46	Tm3+ doped silicon thin film and waveguides for mid-infrared sources. Applied Physics Letters, 2012, 101, .	3.3	11
47	Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Optics Letters, 2012, 37, 392.	3.3	129
48	Active glass waveguide amplifier on GaAs by UV-pulsed laser deposition and femtosecond laser inscription. Laser Physics Letters, 2012, 9, 329-339.	1.4	11
49	Mid-infrared emission from Dy3+doped tellurite bulk glass and waveguides. , 2012, , .		1
50	Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress in Materials Science, 2012, 57, 1426-1491.	32.8	374
51	Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. International Materials Reviews, 2012, 57, 357-382.	19.3	116
52	Enhanced $2.01\frac{1}{4}$ m emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass. Journal of Non-Crystalline Solids, 2012, 358, 1644-1648.	3.1	34
53	Characterization of Rareâ€Earth Oxide Photoactivated Calcium Phosphate Minerals for Resurfacing Teeth. Journal of the American Ceramic Society, 2012, 95, 2716-2724.	3.8	8
54	Raman gain in modified tellurite glasses and thin films. Optics Communications, 2012, 285, 2646-2649.	2.1	13

#	Article	IF	Citations
55	Enhancement in optical and microstructure properties of Er3+-doped phospho-tellurite glass thin film. Optical Materials, 2012, 34, 1272-1276.	3.6	11
56	The alkali roasting of complex oxide minerals for high purity chemicals-beyond the Le Chatelier era into the 21st century. Jom, 2011, 63, 39-42.	1.9	3
57	Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation. Journal Physics D: Applied Physics, 2011, 44, 095501.	2.8	9
58	Two micron tellurite fibre lasers. , 2011, , .		0
59	Tellurite glass and fiber development for Mid-IR transport and supercontinuum applications. , $2011, , .$		0
60	The Structural, Thermal, and Optical Analyses of Multicomponent Germanium Oxide Glasses for Engineering Midâ€Infrared Fiber Chemical Sensing. Journal of the American Ceramic Society, 2010, 93, 3259-3266.	3.8	17
61	Engineering rare-earth-doped heavy metal oxide glasses for 2-5 \hat{l} 4m lasers. , 2010, , .		3
62	A Short Review on the Pulsed Laser Deposition of Er ³⁺ 10n Doped Oxide Glass Thin Films for Integrated Optics. Transactions of the Indian Ceramic Society, 2010, 69, 207-221.	1.0	7
63	Lattice strain dependent optical transitions in Ho3+-ion doped barium strontium titanate thin films. Journal of Materials Science: Materials in Electronics, 2009, 20, 190-194.	2.2	3
64	High-Tg GeS2 based glasses for chemical sensing applications. Journal of Materials Science: Materials in Electronics, 2009, 20, 202-206.	2.2	3
65	â^1/42 Î1/4m Tm3+/Yb3+-doped tellurite fibre laser. Journal of Materials Science: Materials in Electronics, 2009, 20, 317-320.	2.2	14
66	Selective separation of rare earths and impurities from ilmenite ore by addition of K+ and Al3+ ions. Hydrometallurgy, 2009, 95, 254-261.	4.3	18
67	Investigation on germanium oxide-based glasses for infrared optical fibre development. Optical Materials, 2009, 31, 1701-1706.	3.6	48
68	Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics. Journal of Non-Crystalline Solids, 2009, 355, 2015-2019.	3.1	27
69	Theoretical Modeling of a $\sin {2}$ -mu{m m}-{m Tm}^{3+}\$-Doped Tellurite Fiber Laser: The Influence of Cross Relaxation. Journal of Lightwave Technology, 2009, 27, 4026-4032.	4.6	20
70	Numerical Rate Equation Modeling of a ${\sinh {2.1}}-\mu{\hbar \ Tm}^{3+}/{m \ Ho}^{3+}\ Co-Doped Tellurite Fiber Laser. Journal of Lightwave Technology, 2009, 27, 4280-4288.$	4.6	36
71	Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in singleand multi-core mid-IR glass fibers. Optics Express, 2009, 17, 7540.	3.4	29
72	High quality erbium doped tellurite glass films using ultrafast laser deposition. , 2009, , .		2

#	Article	IF	CITATIONS
73	Recent advances in mid-IR optical fibres for chemical and biological sensing in the 2-151 $\!\!\!\!/4$ m spectral range. , 2009, , .		3
74	Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560–660nm). Optics Communications, 2008, 281, 4370-4373.	2.1	34
75	Er 3 + -doped boro-tellurite glass for optical amplification in the 1530–1580nm. Journal of Applied Physics, 2008, 103, .	2.5	54
76	Efficient ~2 μm Tm^3+-doped tellurite fiber laser. Optics Letters, 2008, 33, 402.	3.3	123
77	Tm^3+/Ho^3+ codoped tellurite fiber laser. Optics Letters, 2008, 33, 1282.	3.3	65
78	A Yb^3+/Tm^3+/Ho^3+ triply-doped tellurite fibre laser. Optics Express, 2008, 16, 10690.	3.4	73
79	Effect of nano-scale crystal field on the broadening of Er^3+- emission in sodium tellurite glass ceramics. Optics Express, 2008, 16, 13526.	3.4	28
80	Suppression of up-conversion luminescence in Er ³⁺ -codoped oxyfluoride silicate glass. , 2008, , .		0
81	Fabrication of Multicore Tellurite Glass Optical Fibres. , 2007, , .		4
82	Infrared emission and energy transfer in Tm^3+ , Tm^3+ -Ho $^3+$ and Tm^3+ -Yb $^3+$ -doped tellurite fibre. Optics Express, 2007, 15, 6546.	3.4	98
83	Thermal sensitivity of tellurite and germanate optical fibers. Optics Express, 2007, 15, 8857.	3.4	39
84	Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Optics Express, 2007, 15, 15776.	3.4	75
85	Effect of Pb-ions on the kinetics of devitrification and viscosities of AlF3-based glasses for waveguide fabrication. Journal of Non-Crystalline Solids, 2007, 353, 1283-1286.	3.1	5
86	Spectroscopic characterization of signal gain and pump ESA in short-lengths of RE-doped tellurite fibers. Journal of Non-Crystalline Solids, 2007, 353, 1407-1413.	3.1	16
87	Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers. Journal of Materials Science: Materials in Electronics, 2007, 18, 315-320.	2.2	9
88	Kinetics and Reaction Mechanism of Soda Ash Roasting of Ilmenite Ore for the Extraction of Titanium Dioxide. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 939-948.	2.1	33
89	Enhancement in pump inversion efficiency at 980 nm in Er3+, Er3+/Eu3++ and Er3+/Ce3+doped tellurite glass fibers. Optics Express, 2006, 14, 5050.	3.4	73
90	The physical chemistry of thermal decomposition of South African chromite minerals. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 75-84.	2.1	40

#	Article	IF	Citations
91	Investigation on the kinetics of devitrification of GeS2-based glasses. Journal of Materials Research, 2005, 20, 856-863.	2.6	13
92	980-nm diode-pumped Tm^3+?Yb^3+-codoped tellurite fiber for S-band amplification. Optics Letters, 2005, 30, 1437.	3.3	46
93	Spectroscopic Properties of Rare Earth Metal Ion Doped Tellurium Oxide Glasses and Fibres. Journal of Optics (India), 2004, 33, 157-170.	1.7	7
94	The influence of Fâ^'-ion doping on the fluorescence (4113/2â†'4115/2) line shape broadening in Er3+-doped oxyfluoride silicate glasses. Optical Materials, 2004, 25, 321-333.	3.6	75
95	Visible emissions at 592 and 613 nm in Er3+–Eu3+-codoped tellurite fibers. Optics Communications, 2004, 239, 403-408.	2.1	8
96	Near infrared spectroscopic investigation of Tm3+–Yb3+ co-doped tellurite glasses. Journal of Non-Crystalline Solids, 2004, 345-346, 349-353.	3.1	47
97	Compositional effects and spectroscopy of rare earths (Er3+, Tm3+, and Nd3+) in tellurite glasses. Comptes Rendus Chimie, 2002, 5, 921-938.	0.5	57
98	Tungsten–tellurite—a host glass for broadband EDFA. Optics Communications, 2002, 205, 101-105.	2.1	90
99	Tellurite Glasses for Broadband Amplifiers and Integrated Optics. Journal of the American Ceramic Society, 2002, 85, 1391-1395.	3.8	135
100	Inorganic glasses as Kerr-like media. Current Opinion in Solid State and Materials Science, 2001, 5, 475-479.	11.5	25
101	Raman spectra and structure of fluoroaluminophosphate glasses. Journal of Non-Crystalline Solids, 2001, 284, 43-48.	3.1	44
102	Pr3+-doped fluoride glass for a 589nm fibre laser. Journal of Luminescence, 2000, 91, 133-138.	3.1	18
103	Influence of vapor-phase reaction on the reduction of OH?and S–H absorption bands in GeS2-based glasses for infrared optics. Journal of Materials Research, 2000, 15, 2864-2874.	2.6	8
104	Tm^3+-doped tellurite glass for a broadband amplifier at 147 µm. Applied Optics, 2000, 39, 4979.	2.1	115
105	Structural origin of spectral broadening of $1.5-\hat{l}\frac{1}{4}$ m emission in Er3+-doped tellurite glasses. Physical Review B, 2000, 62, 6215-6227.	3.2	262
106	1G4 lifetimes, optical and thermal characteristics of Pr-doped GeS2-chalcohalide glasses. Journal of Non-Crystalline Solids, 1996, 196, 314-319.	3.1	30
107	Phase equilibria in the metal-sulfur-oxygen system and selective reduction of metal oxides and sulfides: Part I. The carbothermic reduction and calcination of complex mineral sulfides. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1996, 27, 829-840.	2.1	13
108	Kinetics of glass formation of heavy metal fluoride melts. Journal of Non-Crystalline Solids, 1991, 134, 157-168.	3.1	16

ARTICLE IF CITATIONS

A Novel Low-Energy Route for the Extraction of Copper and Cobalt Metals/Alloys from the Zambian Sulphide Concentrates., 0, , 77-87.