Yeong-Bin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibration of simple beams due to trains moving at high speeds. Engineering Structures, 1997, 19, 936-944.	2.6	340
2	Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification. Engineering Structures, 2005, 27, 1865-1878.	2.6	326
3	Vehicle-Bridge Interaction Element for Dynamic Analysis. Journal of Structural Engineering, 1997, 123, 1512-1518.	1.7	309
4	Vehicle–bridge interaction dynamics and potential applications. Journal of Sound and Vibration, 2005, 284, 205-226.	2.1	288
5	Solution method for nonlinear problems with multiple critical points. AIAA Journal, 1990, 28, 2110-2116.	1.5	268
6	A 2.5D finite/infinite element approach for modelling viscoâ€elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering, 2001, 51, 1317-1336.	1.5	247
7	State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles. International Journal of Structural Stability and Dynamics, 2018, 18, 1850025.	1.5	237
8	Vehicle-Bridge Interaction Analysis by Dynamic Condensation Method. Journal of Structural Engineering, 1995, 121, 1636-1643.	1.7	206
9	Train-induced wave propagation in layered soils using finite/infinite element simulation. Soil Dynamics and Earthquake Engineering, 2003, 23, 263-278.	1.9	190
10	Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique. Journal of Sound and Vibration, 2009, 322, 718-739.	2.1	187
11	Constructing the mode shapes of a bridge from a passing vehicle: a theoretical study. Smart Structures and Systems, 2014, 13, 797-819.	1.9	186
12	A versatile element for analyzing vehicle–bridge interaction response. Engineering Structures, 2001, 23, 452-469.	2.6	160
13	Stiffness Matrix for Geometric Nonlinear Analysis. Journal of Structural Engineering, 1986, 112, 853-877.	1.7	159
14	Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study. Engineering Structures, 2009, 31, 2448-2459.	2.6	138
15	A parametric study of wave barriers for reduction of train-induced vibrations. International Journal for Numerical Methods in Engineering, 1997, 40, 3729-3747.	1.5	130
16	DYNAMIC STABILITY OF TRAINS MOVING OVER BRIDGES SHAKEN BY EARTHQUAKES. Journal of Sound and Vibration, 2002, 258, 65-94.	2.1	127
17	Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Engineering Structures, 2003, 25, 251-265.	2.6	123
18	Impact Formulas for Vehicles Moving over Simple and Continuous Beams. Journal of Structural Engineering, 1995, 121, 1644-1650.	1.7	121

#	Article	IF	CITATIONS
19	Effect of Curvature on Stability of Curved Beams. Journal of Structural Engineering, 1987, 113, 1185-1202.	1.7	114
20	Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge. Engineering Structures, 2013, 48, 353-362.	2.6	109
21	Three-Dimensional Analysis of Train-Rail-Bridge Interaction Problems. Vehicle System Dynamics, 2001, 36, 1-35.	2.2	106
22	Elastic waves in visco-elastic half-space generated by various vehicle loads. Soil Dynamics and Earthquake Engineering, 2001, 21, 1-17.	1.9	105
23	Effect of railway roughness on soil vibrations due to moving trains by 2.5D finite/infinite element approach. Engineering Structures, 2013, 57, 254-266.	2.6	104
24	Impact response of high speed rail bridges and riding comfort of rail cars. Engineering Structures, 1999, 21, 836-844.	2.6	101
25	Contact-Point Response for Modal Identification of Bridges by a Moving Test Vehicle. International Journal of Structural Stability and Dynamics, 2018, 18, 1850073.	1.5	99
26	Mechanism of resonance and cancellation for train-induced vibrations on bridges with elastic bearings. Journal of Sound and Vibration, 2004, 269, 345-360.	2.1	98
27	FREQUENCY VARIATION IN VEHICLE–BRIDGE INTERACTION SYSTEMS. International Journal of Structural Stability and Dynamics, 2013, 13, 1350019.	1.5	98
28	Joint Rotation and Geometric Nonlinear Analysis. Journal of Structural Engineering, 1986, 112, 879-905.	1.7	94
29	Using two connected vehicles to measure the frequencies of bridges with rough surface: a theoretical study. Acta Mechanica, 2012, 223, 1851-1861.	1.1	94
30	Wave Barriers for Reduction of Train-Induced Vibrations in Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2004, 130, 1283-1291.	1.5	91
31	Vibration reduction for cable-stayed bridges traveled by high-speed trains. Finite Elements in Analysis and Design, 2004, 40, 341-359.	1.7	86
32	An effective means for damage detection of bridges using the contact-point response of a moving test vehicle. Journal of Sound and Vibration, 2018, 419, 158-172.	2.1	83
33	Response of multi-degree-of-freedom structures with sliding supports. Earthquake Engineering and Structural Dynamics, 1990, 19, 739-752.	2.5	80
34	IMPACT RESPONSE OF BRIDGES WITH ELASTIC BEARINGS TO MOVING LOADS. Journal of Sound and Vibration, 2001, 248, 9-30.	2.1	79
35	Rigid Body Motion Test for Nonlinear Analysis with Beam Elements. Journal of Engineering Mechanics - ASCE, 1987, 113, 1404-1419.	1.6	78
36	A new direct method for updating structural models based on measured modal data. Engineering Structures, 2009, 31, 32-42.	2.6	78

#	Article	IF	CITATIONS
37	Measuring bridge frequencies by a test vehicle in non-moving and moving states. Engineering Structures, 2020, 203, 109859.	2.6	78
38	An element for analysing vehicle-bridge systems considering vehicle's pitching effect. International Journal for Numerical Methods in Engineering, 1999, 46, 1031-1047.	1.5	73
39	Vertical accelerations of simple beams due to successive loads traveling at resonant speeds. Journal of Sound and Vibration, 2006, 289, 210-228.	2.1	72
40	State-of-the-Art of Vehicle-Based Methods for Detecting Various Properties of Highway Bridges and Railway Tracks. International Journal of Structural Stability and Dynamics, 2020, 20, 2041004.	1.5	71
41	A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads. Engineering Structures, 2004, 26, 1795-1807.	2.6	69
42	Experimental study of a hand-drawn cart for measuring the bridge frequencies. Engineering Structures, 2013, 57, 222-231.	2.6	64
43	Bridge damping identification by vehicle scanning method. Engineering Structures, 2019, 183, 637-645.	2.6	61
44	Stability of Beams with Tapered Iâ€Sections. Journal of Engineering Mechanics - ASCE, 1987, 113, 1337-1357.	1.6	60
45	Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies. Interaction and Multiscale Mechanics, 2012, 5, 347-368.	0.4	60
46	Vertical and pitching resonance of train cars moving over a series of simple beams. Journal of Sound and Vibration, 2015, 337, 135-149.	2.1	59
47	Static Stability of Curved Thinâ€Walled Beams. Journal of Engineering Mechanics - ASCE, 1986, 112, 821-841.	1.6	58
48	Use of Straightâ€Beam Approach to Study Buckling of Curved Beams. Journal of Structural Engineering, 1991, 117, 1963-1978.	1.7	58
49	Resonance of high-speed trains moving over a series of simple or continuous beams with non-ballasted tracks. Engineering Structures, 2017, 143, 295-305.	2.6	57
50	Comparative study of 2D and 2.5D responses of long underground tunnels to moving train loads. Soil Dynamics and Earthquake Engineering, 2017, 97, 86-100.	1.9	55
51	Disk model for wheels moving over highway bridges with rough surfaces. Journal of Sound and Vibration, 2011, 330, 4930-4944.	2.1	49
52	Curved Beam Elements for Nonlinear Analysis. Journal of Engineering Mechanics - ASCE, 1989, 115, 840-855.	1.6	48
53	2.5D vibration of railway-side buildings mitigated by open or infilled trenches considering rail irregularity. Soil Dynamics and Earthquake Engineering, 2018, 106, 204-214.	1.9	47
54	A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper. Engineering Structures, 2012, 45, 284-298.	2.6	46

#	Article	IF	CITATIONS
55	Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation. Engineering Structures, 2007, 29, 1189-1200.	2.6	45
56	An iterative interacting method for dynamic analysis of the maglev train–guideway/foundation–soil system. Engineering Structures, 2011, 33, 1013-1024.	2.6	45
57	Seismic analysis of underground tunnels by the 2.5D finite/infinite element approach. Soil Dynamics and Earthquake Engineering, 2016, 85, 31-43.	1.9	45
58	A procedure for analysing space frames with partial warping restraint. International Journal for Numerical Methods in Engineering, 1984, 20, 1377-1398.	1.5	44
59	A Review of Researches on Ground-Borne Vibrations Due to Moving Trains via Underground Tunnels. Advances in Structural Engineering, 2006, 9, 377-392.	1.2	44
60	Incrementally small-deformation theory for nonlinear analysis of structural frames. Engineering Structures, 2002, 24, 783-798.	2.6	43
61	Analysis of ground vibrations due to underground trains by 2.5D finite/infinite element approach. Earthquake Engineering and Engineering Vibration, 2010, 9, 327-335.	1.1	42
62	Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 1178-1192.	3.4	41
63	Two-axle test vehicle for bridges: Theory and applications. International Journal of Mechanical Sciences, 2019, 152, 51-62.	3.6	41
64	Dynamic response of high speed vehicles and sustaining curved bridges under conditions of resonance. Engineering Structures, 2016, 114, 61-74.	2.6	40
65	Effect of road surface roughness on indirect approach for measuring bridge frequencies from a passing vehicle. Interaction and Multiscale Mechanics, 2010, 3, 299-308.	0.4	38
66	Seismic performance of steel and concrete composite shear walls with embedded steel truss for use in high-rise buildings. Engineering Structures, 2016, 125, 39-53.	2.6	36
67	Effects of Rigid Body and Stretching on Nonlinear Analysis of Trusses. Journal of Structural Engineering, 1990, 116, 2582-2598.	1.7	35
68	Recent developments in geometrically nonlinear and postbuckling analysis of framed structures. Applied Mechanics Reviews, 2003, 56, 431-449.	4.5	35
69	Vibration of a suspension bridge installed with a water pipeline and subjected to moving trains. Engineering Structures, 2008, 30, 632-642.	2.6	35
70	Seismic fragility analysis of deteriorating RC bridge columns with time-variant capacity index. Bulletin of Earthquake Engineering, 2019, 17, 4247-4267.	2.3	34
71	Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data. Engineering Structures, 2019, 200, 109697.	2.6	33
72	Tracing postbuckling paths of structures containing multi-loops. International Journal for Numerical Methods in Engineering, 1995, 38, 4053-4075.	1.5	32

#	Article	IF	CITATIONS
73	A novel frequency-free movable test vehicle for retrieving modal parameters of bridges: Theory and experiment. Mechanical Systems and Signal Processing, 2022, 170, 108854.	4.4	32
74	New Theory on Buckling of Curved Beams. Journal of Engineering Mechanics - ASCE, 1991, 117, 1698-1717.	1.6	31
75	Consistent Frame Buckling Analysis by Finite Element Method. Journal of Structural Engineering, 1991, 117, 1053-1069.	1.7	31
76	Effects of member buckling and yielding on ultimate strengths of space trusses. Engineering Structures, 1997, 19, 179-191.	2.6	31
77	Refined detection technique for bridge frequencies using rocking motion of single-axle moving vehicle. Mechanical Systems and Signal Processing, 2022, 162, 107992.	4.4	30
78	Force recovery procedures in nonlinear analysis. Computers and Structures, 1991, 41, 1255-1261.	2.4	28
79	High-speed running maglev trains interacting with elastic transitional viaducts. Engineering Structures, 2019, 183, 562-578.	2.6	28
80	Damped test vehicle for scanning bridge frequencies: Theory, simulation and experiment. Journal of Sound and Vibration, 2021, 506, 116155.	2.1	28
81	Frame Buckling Analysis with Full Consideration of Joint Compatibilities. Journal of Engineering Mechanics - ASCE, 1992, 118, 871-889.	1.6	27
82	A semi-analytical approach for analyzing ground vibrations caused by trains moving over elevated bridges. Soil Dynamics and Earthquake Engineering, 2004, 24, 949-962.	1.9	26
83	Calculation of rain load based on single raindrop impinging experiment and applications. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147, 85-94.	1.7	25
84	Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle. Engineering Structures, 2021, 230, 111688.	2.6	21
85	Two-axle test vehicle for damage detection for railway tracks modeled as simply supported beams with elastic foundation. Engineering Structures, 2020, 219, 110908.	2.6	19
86	Reduction factors for stainless steel bolts at elevated temperatures. Journal of Constructional Steel Research, 2018, 148, 198-205.	1.7	18
87	Postbuckling analysis of trusses with various Lagrangian formulations. AIAA Journal, 1990, 28, 946-948.	1.5	17
88	Seismic response of light equipment in torsional buildings. Earthquake Engineering and Structural Dynamics, 1993, 22, 113-128.	2.5	17
89	Reduction of train-induced vibrations on adjacent buildings. Structural Engineering and Mechanics, 2001, 11, 503-518.	1.0	17
90	Constitutive laws and force recovery procedures in nonlinear analysis of trusses. Computer Methods in Applied Mechanics and Engineering, 1991, 92, 121-131.	3.4	16

#	Article	lF	CITATIONS
91	A simple nonlinear triangular plate element and strategies of computation for nonlinear analysis. Computer Methods in Applied Mechanics and Engineering, 1999, 178, 307-321.	3.4	16
92	Inelastic postbuckling response of steel trusses under thermal loadings. Journal of Constructional Steel Research, 2008, 64, 1394-1407.	1.7	16
93	Geometrically nonlinear analysis of planar circular arches based on rigid element concept — A structural approach. Engineering Structures, 2008, 30, 955-964.	2.6	16
94	Macro-Modeling of Reinforced Concrete Structural Walls: State-of-the-Art. Journal of Earthquake Engineering, 2017, 21, 652-678.	1.4	16
95	Wave transmission of linked railcars moving over multi simple beams under dual resonance. Journal of Sound and Vibration, 2019, 452, 51-57.	2.1	16
96	Scanning torsional-flexural frequencies of thin-walled box girders with rough surface from vehicles' residual contact response: Theoretical study. Thin-Walled Structures, 2021, 169, 108332.	2.7	16
97	Equipment-structure interaction considering the effect of torsion and base isolation. Earthquake Engineering and Structural Dynamics, 1998, 27, 155-171.	2.5	15
98	Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM. Shock and Vibration, 2016, 2016, 1-12.	0.3	14
99	Non-linear stiffnesses in analysis of planar frames. Computer Methods in Applied Mechanics and Engineering, 1994, 117, 233-247.	3.4	12
100	Time-domain Markov chain Monte Carlo–based Bayesian damage detection of ballasted tracks using nonlinear ballast stiffness model. Structural Health Monitoring, 2021, 20, 2653-2677.	4.3	12
101	Invariant isogeometric formulations for three-dimensional Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 112996.	3.4	12
102	Invariant isogeometric formulation for the geometric stiffness matrix of spatial curved Kirchhoff rods. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113692.	3.4	12
103	Frequency extraction for bridges with rough surface by a moving test vehicle enhanced by a shaker. Engineering Structures, 2022, 266, 114598.	2.6	12
104	Out-of-plane buckling of angled frames. International Journal of Mechanical Sciences, 1991, 33, 55-67.	3.6	11
105	MULTI-MODE COUPLED BUFFETING ANALYSIS OF CABLE-STAYED BRIDGES. International Journal of Structural Stability and Dynamics, 2001, 01, 429-453.	1.5	11
106	On computation of soil vibrations due to moving train loads by 2.5D approach. Soil Dynamics and Earthquake Engineering, 2017, 101, 204-208.	1.9	11
107	Seismic damage assessment of RC structures under shaking table tests using the modified direct stiffness calculation method. Engineering Structures, 2017, 131, 574-586.	2.6	11
108	Finite Element Analysis of an Infinite Beam on a Viscoelastic Foundation Subjected to a Moving Vehicle. International Journal of Structural Stability and Dynamics, 2017, 17, 1750045.	1.5	11

#	Article	IF	CITATIONS
109	Scanning the modal coupling of slender suspension footbridges by a virtual moving vehicle. Engineering Structures, 2019, 180, 574-585.	2.6	11
110	Stocky thin- or thick-walled beams: Theory and analysis. Engineering Structures, 2018, 159, 55-65.	2.6	10
111	Theoretical study on a dual-beam model for detection of track/bridge frequencies and track modulus by a moving vehicle. Engineering Structures, 2021, 244, 112726.	2.6	10
112	Furthering extraction of torsional–flexural frequencies for thin-wall beams from the rocking motion of a two-wheel test vehicle. Thin-Walled Structures, 2022, 175, 109224.	2.7	10
113	Geometric stiffness of membranes using symbolic algebra. Engineering Structures, 2004, 26, 759-767.	2.6	9
114	Seismic performance of reinforced concrete squat walls with embedded cold-formed and thin walled steel truss. Engineering Structures, 2017, 132, 714-732.	2.6	9
115	Modeling of force-displacement behavior of post-tensioned self-centering concrete connections. Engineering Structures, 2019, 198, 109538.	2.6	9
116	Rigid body considerations for non-linear finite element analysis. International Journal for Numerical Methods in Engineering, 1992, 33, 1597-1610.	1.5	8
117	Inelastic nonlinear behavior of steel trusses cooled down from a heating stage. International Journal of Mechanical Sciences, 2010, 52, 982-992.	3.6	8
118	A weak-form quadrature element formulation for 3D beam elements used in nonlinear and postbuckling analysis of space frames. Engineering Structures, 2017, 145, 34-43.	2.6	8
119	Vibrations of a composite shell of hemiellisoidal-cylindrical shell having variable thickness with and without a top opening. Thin-Walled Structures, 2017, 119, 677-686.	2.7	8
120	Wind-induced aerostatic instability of cable-supported bridges by a two-stage geometric nonlinear analysis. Interaction and Multiscale Mechanics, 2008, 1, 381-396.	0.4	8
121	Damage detection of plate-type bridges using uniform translational response generated by single-axle moving vehicle. Engineering Structures, 2022, 266, 114530.	2.6	8
122	Recent researches on buckling of framed structures and curved beams. Journal of Constructional Steel Research, 1993, 26, 193-210.	1.7	7
123	Stress waves in half-space due to moving train loads by 2.5D finite/infinite element approach. Soil Dynamics and Earthquake Engineering, 2019, 125, 105714.	1.9	7
124	2.5D prediction of soil vibrations due to railway loads by the isogeometric analysis with scaled boundary. Engineering Analysis With Boundary Elements, 2022, 134, 341-359.	2.0	7
125	Discussion: Thin-Walled Curved Beams. I: Formulation of Nonlinear Equations. Journal of Engineering Mechanics - ASCE, 1996, 122, 482-484.	1.6	6
126	Explicit Inelastic Stiffness for Beam Elements with Uniform and Nonuniform Cross Sections. Journal of Structural Engineering, 2008, 134, 608-618.	1.7	6

#	Article	IF	CITATIONS
127	Geometrically nonlinear quadrature element analysis of spatial curved beams. Engineering Structures, 2020, 209, 110004.	2.6	6
128	Half-space response to trains moving along curved paths by 2.5D finite/infinite element approach. Soil Dynamics and Earthquake Engineering, 2021, 145, 106740.	1.9	6
129	Effect of reinforcement strength on seismic behavior of concrete moment frames. Earthquake and Structures, 2015, 9, 699-718.	1.0	6
130	Internal instability of thin-walled beams under harmonic moving loads. Thin-Walled Structures, 2022, 174, 109123.	2.7	6
131	Damage detection for constituents of track-bridge systems from driving component of vehicle-rail contact response. Engineering Structures, 2022, 259, 114143.	2.6	6
132	Critical load analysis of undamped nonconservative systems using bieigenvalue curves. AIAA Journal, 1994, 32, 2462-2468.	1.5	4
133	Discussion and Closure: Impact Formulas for Vehicles Moving Over Simple and Continuous Beams. Journal of Structural Engineering, 1997, 123, 533-534.	1.7	4
134	Consistent virtual work approach for the nonlinear and postbuckling analysis of steel frames under thermal and mechanical loadings. Engineering Structures, 2011, 33, 1870-1882.	2.6	4
135	A rigid-body-qualified plate theory for the nonlinear analysis of structures involving torsional actions. Engineering Structures, 2013, 47, 2-15.	2.6	4
136	Seismic Performance of Endplate Connections between Steel Reinforced Concrete Walls and Steel Beams. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2018, 28, 208-217.	0.5	4
137	Rational nonlinear analysis of framed structures and curved beams considering joint equilibrium in deformed state. International Journal of Non-Linear Mechanics, 2020, 125, 103538.	1.4	4
138	Discussion: Thin-Walled Curved Beams. II: Analytical Solutions for Buckling of Arches. Journal of Engineering Mechanics - ASCE, 1996, 122, 484-486.	1.6	3
139	Geometric Stiffness of Space Frames Using Symbolic Algebra. International Journal of Structural Stability and Dynamics, 2003, 03, 335-353.	1.5	3
140	Theoretical and Experimental Verifications of Bridge Frequency Using Indirect Method. Conference Proceedings of the Society for Experimental Mechanics, 2020, , 153-158.	0.3	3
141	2.5D formulation and analysis of a half-space subjected to internal loads moving at sub- and super-critical speeds. Soil Dynamics and Earthquake Engineering, 2021, 142, 106550.	1.9	3
142	A work weighted state vector control method for geometrically nonlinear analysis. Computers and Structures, 1993, 46, 689-694.	2.4	2
143	Chaotic Behaviors of a Two-Member Truss. JVC/Journal of Vibration and Control, 1997, 3, 103-118.	1.5	2
144	Cogwheel loading as a moving test load for bridges – analysis and laboratory experiments. MATEC Web of Conferences, 2020, 310, 00030.	0.1	2

#	Article	IF	CITATIONS
145	An element for analysing vehicle–bridge systems considering vehicle's pitching effect. , 1999, 46, 1031.		2
146	Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings. Structural Engineering and Mechanics, 2016, 58, 783-797.	1.0	2
147	Stability of tapered bars of circular cross-sections under semi- and quasi-tangential torques. International Journal of Mechanical Sciences, 1992, 34, 31-40.	3.6	1
148	Instability of Lightly Damped Linear Nonconservative Systems. AIAA Journal, 1997, 35, 901-908.	1.5	1
149	A New Approach for Deriving the Instability Potential for Plates Based on Rigid Body and Force Equilibrium Considerations. Procedia Engineering, 2011, 14, 14-22.	1.2	1
150	On applicability of Hilbert–Huang transform for vibration analysis of a two-member truss. IES Journal Part A: Civil and Structural Engineering, 2012, 5, 67-78.	0.4	1
151	EXPERIMENTAL STUDY OF LOAD CAPACITIES OF TUBULAR STEEL ADJUSTABLE SHORES USED IN CONSTRUCTION. International Journal of Structural Stability and Dynamics, 2013, 13, 1250063.	1.5	1
152	Identification of System Properties in a Square Frame Undergoing Large Deformations: Numerical and Experimental Investigations. International Journal of Structural Stability and Dynamics, 2014, 14, 1450017.	1.5	1
153	Closed-form exact solutions for hysteretically damped longitudinal free and forced vibrations of tapered beams. Acta Mechanica, 2018, 229, 4741-4751.	1.1	1
154	Theoretical and numerical analyses of a half space with overlying liquid subjected to an internal line load. Soil Dynamics and Earthquake Engineering, 2019, 126, 105823.	1.9	1
155	Seismic behavior of composite walls with encased steel truss. Steel and Composite Structures, 2016, 22, 449-472.	1.3	1
156	Constitutive Law and Force Recovery for Large Strain Problems. , 1991, , 209-216.		1
157	Stress analysis of an infinite rectangular plate perforated by two unequal circular holes under bi-axial uniform stresses. Structural Engineering and Mechanics, 2017, 61, 747-754.	1.0	1
158	Seismic Collapse Safety of 3D Steel Moment Frames Supported on Two Ground Levels. International Journal of Structural Stability and Dynamics, 2022, 22, .	1.5	1
159	Letter to the Editor: Closure to discussion on the article "Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation―by Y.B. Yang, S.P. Lin, C.S. Chen [Comput. Methods Appl. Mech. Engrg. 196 (2007) 1178–1192]. Computer Methods in Applied Mechanics and Engineering. 2008. 197. 881-882.	3.4	0
160	Aerodynamic instability of cable-supported bridges considering the initial deformed shape due to dead loads. International Journal of Structural Engineering, 2009, 1, 71.	0.3	0
161	On the Numerical Identification of System Properties in a Square Frame. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 91-92.	0.2	0
162	A new buckling theory for curved beams of solid cross sections derived from rigid body and force equilibrium considerations. IES Journal Part A: Civil and Structural Engineering, 2014, 7, 63-72.	0.4	0

#	Article	IF	CITATIONS
163	Curved Beam Theories and Related Computational Aspects. , 2001, , 291-298.		0
164	Deformation of a rectangular plate with an arbitrarily located circular hole under in-plane pure shear loading. Structural Engineering and Mechanics, 2016, 60, 351-363.	1.0	0
165	Mechanical Properties of Stainless Steel Bolts at Elevated Temperatures. , 2017, , .		0