List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of graphene-based polymeric nanocomposites using emulsion techniques. Progress in Polymer Science, 2022, 125, 101476.	11.8	26
2	Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid and Polymer Science, 2022, 300, 309-317.	1.0	5
3	Tuning phase separation morphology in blend thin films using well-defined linear (multi)block copolymers. Polymer, 2022, 240, 124466.	1.8	8
4	Nano-dimensional spheres and worms as fillers in polymer nanocomposites: effect of filler morphology. Polymer Chemistry, 2022, 13, 1818-1823.	1.9	10
5	Synthesis of low glass transition temperature worms comprising a poly(styrene- <i>stat-n</i> -butyl) Tj ETQq1 1 C polymerization. Polymer Chemistry, 2022, 13, 1719-1730.).784314 1.9	rgBT /Overlo 9
6	Special issue dedicated to the memory of Prof Masayoshi Okubo. Colloid and Polymer Science, 2022, 300, 251-253.	1.0	0
7	Polymeric Nanofibers of Various Degrees of Crossâ€Linking as Fillers in Poly(styreneâ€ <i>statâ€n</i> â€butyl) Tj Macromolecular Rapid Communications, 2022, 43, e2100879.	ETQq11(2.0).784314 rg 5
8	Synthesis of Highly Stretchable and Electrically Conductive Multiwalled Carbon Nanotube/Polymer Nanocomposite Films. ACS Applied Polymer Materials, 2022, 4, 1867-1877.	2.0	9
9	Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules, 2022, 55, 1981-1991.	2.2	14
10	Polymer/Reduced Graphene Oxide/Lignosulfonate Nanocomposite Films as Pseudocapacitor Cathodes. ACS Applied Nano Materials, 2022, 5, 3686-3700.	2.4	8
11	Polymeric nanocomposites based on high aspect ratio polymer fillers: Simultaneous improvement in tensile strength and stretchability. European Polymer Journal, 2022, 169, 111134.	2.6	7
12	RAFT dispersion polymerization induced self-assembly (PISA) of boronic acid-substituted acrylamides. Polymer Chemistry, 2022, 13, 3750-3755.	1.9	5
13	Strategies for reduction of graphene oxide – A comprehensive review. Chemical Engineering Journal, 2021, 405, 127018.	6.6	252
14	Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polymer Chemistry, 2021, 12, 122-133.	1.9	29
15	Introduction to polymerisation-induced self assembly. Polymer Chemistry, 2021, 12, 8-11.	1.9	19
16	Mechanistic Aspects of the Functionalization of Graphene Oxide with Ethylene Diamine: Implications for Energy Storage Applications. ACS Applied Nano Materials, 2021, 4, 3232-3240.	2.4	27
17	Structural Complexity of Graphene Oxide: The Kirigami Model. ACS Applied Materials & Interfaces, 2021, 13, 18255-18263.	4.0	20
18	Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules, 2021, 54, 3647-3658.	2.2	15

#	Article	IF	CITATIONS
19	Influence of Anionic Surfactants on the Fundamental Properties of Polymer/Reduced Graphene Oxide Nanocomposite Films. ACS Applied Materials & Interfaces, 2021, 13, 18338-18347.	4.0	24
20	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie, 2021, 133, 23469.	1.6	2
21	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie - International Edition, 2021, 60, 23281-23288.	7.2	16
22	Influence of Polymer Matrix on Polymer/Graphene Oxide Nanocomposite Intrinsic Properties. ACS Applied Polymer Materials, 2021, 3, 5145-5154.	2.0	24
23	RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules, 2021, 54, 736-746.	2.2	36
24	<i>In Situ</i> Surfactant Effects on Polymer/Reduced Graphene Oxide Nanocomposite Films: Implications for Coating and Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 12461-12471.	2.4	9
25	Miniemulsion polymerization using carboxylated graphene quantum dots as surfactants: effects of monomer and initiator type. Polymer Chemistry, 2020, 11, 5790-5799.	1.9	13
26	Low-Dispersity Polymers in <i>Ab Initio</i> Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules, 2020, 53, 7672-7683.	2.2	29
27	Synthesis of diamine functionalised graphene oxide and its application in the fabrication of electrically conducting reduced graphene oxide/polymer nanocomposite films. Nanoscale Advances, 2020, 2, 4702-4712.	2.2	23
28	Preparation of Methacrylate Polymer/Reduced Graphene Oxide Nanocomposite Particles Stabilized by Poly(ionic liquid) Block Copolymer via Miniemulsion Polymerization. Macromolecular Rapid Communications, 2020, 41, 2000141.	2.0	7
29	Polymer Synthesis in Continuous Flow Reactors. Progress in Polymer Science, 2020, 107, 101256.	11.8	87
30	Confined polymerisation of bis-thyminyl monomers within nanoreactors: towards molecular weight control. Polymer Chemistry, 2020, 11, 4326-4334.	1.9	9
31	Miniemulsion photopolymerization in a continuous tubular reactor: particle size control <i>via</i> membrane emulsification. Polymer Chemistry, 2020, 11, 4660-4669.	1.9	11
32	RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules, 2020, 21, 4577-4590.	2.6	18
33	Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polymer Chemistry, 2020, 11, 3217-3224.	1.9	28
34	Enhanced Osteogenic Differentiation of Human Fetal Cartilage Rudiment Cells on Graphene Oxide-PLGA Hybrid Microparticles. Journal of Functional Biomaterials, 2019, 10, 33.	1.8	5
35	Cation-induced coagulation in graphene oxide suspensions. Materials Today Chemistry, 2019, 13, 139-146.	1.7	13
36	Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 989-995.	2.3	67

#	Article	IF	CITATIONS
37	Reversible Destabilization of UVâ€Responsive Polymer Particles (Latex) using a Photoresponsive Surfactant. Macromolecular Rapid Communications, 2019, 40, e1900355.	2.0	11
38	The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules, 2019, 52, 7963-7976.	2.2	53
39	Interfacial crosslinking of selfâ€assembled triblock copolymer nanoparticles via alkoxysilane hydrolysis and condensation. Journal of Polymer Science Part A, 2019, 57, 1897-1907.	2.5	6
40	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.5	31
41	Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules, 2019, 52, 4492-4499.	2.2	27
42	Scalable Aqueous Reversible Addition–Fragmentation Chain Transfer Photopolymerization-Induced Self-Assembly of Acrylamides for Direct Synthesis of Polymer Nanoparticles for Potential Drug Delivery Applications. ACS Applied Polymer Materials, 2019, 1, 1251-1256.	2.0	35
43	Polymerization-induced self-assembly based on ATRP in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 2658-2665.	1.9	24
44	Miniemulsion polymerization using graphene oxide as surfactant: In situ grafting of polymers. Carbon, 2019, 149, 445-451.	5.4	30
45	Electrically conductive polymer/rGO nanocomposite films at ambient temperature <i>via</i> miniemulsion polymerization using GO as surfactant. Nanoscale, 2019, 11, 6566-6570.	2.8	34
46	Polymerization of cubosome and hexosome templates to produce complex microparticle shapes. Journal of Colloid and Interface Science, 2019, 546, 240-250.	5.0	20
47	Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.	1.9	51
48	Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules, 2019, 52, 2965-2974.	2.2	54
49	Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 2019, 52, 1609-1619.	2.2	59
50	Ambient-Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity. ACS Applied Materials & amp; Interfaces, 2019, 11, 48450-48458.	4.0	42
51	Polymerizationâ€Induced Selfâ€Assembly under Compressed CO ₂ : Control of Morphology Using a CO ₂ â€Responsive MacroRAFT Agent. Macromolecular Rapid Communications, 2019, 40, e1800335.	2.0	36
52	A Simple and Versatile Pathway for the Synthesis of Visible Light Photoreactive Nanoparticles. Advanced Functional Materials, 2018, 28, 1800342.	7.8	18
53	Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. Journal of Polymer Science Part A, 2018, 56, 831-839.	2.5	11
54	Polymeric Nanocapsules for Enzyme Stabilization in Organic Solvents. Macromolecules, 2018, 51, 438-446.	2.2	35

#	Article	IF	CITATIONS
55	Selfâ€assembly of block copolymers with an alkoxysilaneâ€based coreâ€forming block: A comparison of synthetic approaches. Journal of Polymer Science Part A, 2018, 56, 420-429.	2.5	3
56	Large Hexosomes from Emulsion Droplets: Particle Shape and Mesostructure Control. Langmuir, 2018, 34, 13662-13671.	1.6	11
57	Estimation of Copolymer/Water Interfacial Tensions Using Pendant Drop Tensiometry. Langmuir, 2018, 34, 6835-6843.	1.6	4
58	Pickering miniemulsion polymerization using graphene oxide: effect of addition of a conventional surfactant. Polymer Chemistry, 2018, 9, 3368-3378.	1.9	33
59	Aqueous heterogeneous radical polymerization of styrene under compressed ethane. Journal of Supercritical Fluids, 2018, 142, 45-51.	1.6	1
60	Photopolymerization in dispersed systems. Progress in Polymer Science, 2018, 84, 47-88.	11.8	118
61	Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors. Macromolecules, 2018, 51, 5165-5172.	2.2	105
62	Radical Polymerization of Alkyl 2-Cyanoacrylates. Molecules, 2018, 23, 465.	1.7	41
63	Revised insights into templating radical polymerization within nanoreactors. Journal of Polymer Science Part A, 2017, 55, 1590-1600.	2.5	6
64	Reversible addition-fragmentation chain transfer polymerization of alkyl-2-cyanoacrylates: An assessment of livingness. Journal of Polymer Science Part A, 2017, 55, 1397-1408.	2.5	7
65	Polymerization induced self-assembly: tuning of morphology using ionic strength and pH. Polymer Chemistry, 2017, 8, 3082-3089.	1.9	62
66	Formation of homogeneous nanocomposite films at ambient temperature via miniemulsion polymerization using graphene oxide as surfactant. Journal of Polymer Science Part A, 2017, 55, 2289-2297.	2.5	18
67	Synthesis of polydopamine capsules via SPG membrane emulsion templating: Tuning of capsule size. Journal of Polymer Science Part A, 2017, 55, 365-370.	2.5	7
68	Core–shell and gradient morphology polymer particles analyzed by Xâ€ray photoelectron spectroscopy: Effect of monomer feed order. Journal of Polymer Science Part A, 2017, 55, 2513-2526.	2.5	5
69	RAFT iniferter polymerization in miniemulsion using visible light. Polymer Chemistry, 2017, 8, 3965-3970.	1.9	53
70	Synthesis of polymeric nano-objects of various morphologies based on block copolymer self-assembly using microporous membranes. Reaction Chemistry and Engineering, 2017, 2, 451-457.	1.9	9
71	Synthesis and characterisation of gradient polymeric nanoparticles. Polymer Chemistry, 2017, 8, 495-499.	1.9	10
72	Soft polyhedral particles based on cubic liquid crystalline emulsion droplets. Soft Matter, 2017, 13, 8492-8501.	1.2	17

5

#	Article	IF	CITATIONS
73	CO2-responsive polyacrylamide copolymer vesicles with acid-sensitive morpholine moieties and large hydrophobic RAFT end-group. European Polymer Journal, 2017, 97, 129-137.	2.6	5
74	A facile route to segmented copolymers by fusing ambient temperature step-growth and RAFT polymerization. Chemical Communications, 2017, 53, 10648-10651.	2.2	4
75	Mechanistic Aspects of Aqueous Heterogeneous Radical Polymerization of Styrene under Compressed CO ₂ . Macromolecular Chemistry and Physics, 2017, 218, 1700128.	1.1	4
76	Water and Carbon Dioxide: A Unique Solvent for the Catalytic Polymerization of Ethylene in Miniemulsion. Chemistry - an Asian Journal, 2017, 12, 2057-2061.	1.7	5
77	A new paradigm in polymerization induced self-assembly (PISA): Exploitation of "non-living― addition–fragmentation chain transfer (AFCT) polymerization. Polymer Chemistry, 2017, 8, 4177-4181.	1.9	48
78	Synthesis of polymeric nanoparticles containing reduced graphene oxide nanosheets stabilized by poly(ionic liquid) using miniemulsion polymerization. Soft Matter, 2016, 12, 3955-3962.	1.2	19
79	Polymer-inorganic hybrid nanoparticles of various morphologies via polymerization-induced self assembly and sol–gel chemistry. Polymer Chemistry, 2016, 7, 6575-6585.	1.9	21
80	Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polymer, 2016, 105, 276-283.	1.8	22
81	Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification. Polymer Chemistry, 2016, 7, 7047-7051.	1.9	7
82	Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chemical Society Reviews, 2016, 45, 5055-5084.	18.7	108
83	Radical polymerization of miniemulsions induced by compressed gases. RSC Advances, 2016, 6, 50650-50657.	1.7	5
84	Preparation of Polymer Particles Containing Reduced Graphene Oxide Nanosheets Using Ionic Liquid Monomer. Macromolecules, 2016, 49, 1222-1228.	2.2	13
85	The limits of precision monomer placement in chain growth polymerization. Nature Communications, 2016, 7, 10514.	5.8	141
86	RAFT polymerization in supercritical carbon dioxide based on an induced precipitation approach: Synthesis of 2-ethoxyethyl methacrylate/acrylamide block copolymers. Journal of Polymer Science Part A, 2015, 53, 2351-2356.	2.5	9
87	SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromolecular Rapid Communications, 2015, 36, 1267-1271.	2.0	9
88	Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer, 2015, 63, 1-9.	1.8	42
89	Polymerization induced self-assembly: tuning of nano-object morphology by use of CO ₂ . Polymer Chemistry, 2015, 6, 2249-2254.	1.9	65
90	An Innovative Approach to Implementation of Organotellurium-Mediated Radical Polymerization (TERP) in Emulsion Polymerization. Macromolecules, 2015, 48, 4312-4318.	2.2	10

#	Article	IF	CITATIONS
91	Biocompatible Glycopolymer Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization for the Delivery of Gemcitabine. Biomacromolecules, 2015, 16, 2144-2156.	2.6	53
92	Synthesis of crosslinked polymeric nanocapsules using catanionic vesicle templates stabilized by compressed CO2. Soft Matter, 2015, 11, 8613-8620.	1.2	3
93	Visible-Light-Regulated Controlled/Living Radical Polymerization in Miniemulsion. ACS Macro Letters, 2015, 4, 1139-1143.	2.3	80
94	Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chemical Reviews, 2015, 115, 9745-9800.	23.0	393
95	RAFT inverse miniemulsion periphery polymerization in binary solvent mixtures for synthesis of nanocapsules. European Polymer Journal, 2015, 73, 324-334.	2.6	15
96	Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: Influence of oil phase polarity. Journal of Colloid and Interface Science, 2015, 442, 67-74.	5.0	99
97	Cu(0)-Mediated Controlled/Living Radical Polymerization: A Tool for Precise Multiblock Copolymer Synthesis. ACS Symposium Series, 2014, , 201-212.	0.5	0
98	Hollow hybrid polymer–graphene oxide nanoparticles via Pickering miniemulsion polymerization. Nanoscale, 2014, 6, 8590.	2.8	70
99	Synthesis of fluorinated alkoxyamines and alkoxyamine-initiated nitroxide-mediated precipitation polymerizations of styrene in supercritical carbon dioxide. Polymer Chemistry, 2014, 5, 5725-5733.	1.9	16
100	Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium. Polymer Chemistry, 2014, 5, 6990-7003.	1.9	101
101	Synthesis of pH-Responsive Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization and Post-Polymerization Reaction. ACS Macro Letters, 2014, 3, 935-939.	2.3	37
102	Synthesis of complex macromolecules using iterative copper(0)-mediated radical polymerization. Journal of Polymer Science Part A, 2014, 52, 2083-2098.	2.5	27
103	Chain transfer to solvent in the radical polymerization of structurally diverse acrylamide monomers using straight-chain and branched alcohols as solvents. Polymer Chemistry, 2014, 5, 2259.	1.9	16
104	Successful Miniemulsion ATRP Using an Anionic Surfactant: Minimization of Deactivator Loss by Addition of a Halide Salt. Macromolecules, 2014, 47, 6230-6237.	2.2	33
105	Sequence ontrolled Multiblock Copolymers via RAFT Polymerization: Modeling and Simulations. Macromolecular Theory and Simulations, 2014, 23, 331-339.	0.6	70
106	Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. Macromolecules, 2014, 47, 639-649.	2.2	144
107	Pushing the Limit of the RAFT Process: Multiblock Copolymers by One-Pot Rapid Multiple Chain Extensions at Full Monomer Conversion. Macromolecules, 2014, 47, 3451-3460.	2.2	208
108	Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesis: Effect of pH and ionic strength. Polymer, 2014, 55, 3490-3497.	1.8	49

#	Article	IF	CITATIONS
109	Grafting of P(OEGA) Onto Magnetic Nanoparticles Using Cu(0) Mediated Polymerization: Comparing Grafting "from―and "to―Approaches in the Search for the Optimal Material Design of Nanoparticle MRI Contrast Agents. Macromolecules, 2013, 46, 6038-6047.	2.2	68
110	Preparation of Composite Materials by Using Graphene Oxide as a Surfactant in Ab Initio Emulsion Polymerization Systems. ACS Macro Letters, 2013, 2, 630-634.	2.3	60
111	Dispersion polymerization of styrene in CO2-expanded ethanol. Polymer, 2013, 54, 6689-6694.	1.8	7
112	Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nature Communications, 2013, 4, 2505.	5.8	403
113	Rate enhanced nitroxide-mediated miniemulsion polymerization: effect of nitroxide water solubility. Polymer Chemistry, 2013, 4, 3256.	1.9	9
114	RAFT miniemulsion polymerization using dioctyl sodium sulfosuccinate. Journal of Polymer Science Part A, 2013, 51, 2104-2109.	2.5	6
115	Exploiting the homogeneous expansion limit of CO2-expanded media for the synthesis of polymeric nanoparticles. Journal of Supercritical Fluids, 2013, 78, 89-94.	1.6	4
116	Inverse Miniemulsion Periphery RAFT Polymerization: A Convenient Route to Hollow Polymeric Nanoparticles with an Aqueous Core. Macromolecules, 2013, 46, 2118-2127.	2.2	59
117	Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polymer Chemistry, 2013, 4, 106-112.	1.9	75
118	High Molecular Weight Block Copolymers by Sequential Monomer Addition via Cu(0)-Mediated Living Radical Polymerization (SET-LRP): An Optimized Approach. ACS Macro Letters, 2013, 2, 896-900.	2.3	124
119	Synthesis of polystyrene nanoparticles "armoured―with nanodimensional graphene oxide sheets by miniemulsion polymerization. Journal of Polymer Science Part A, 2013, 51, 47-58.	2.5	77
120	Influence of monomer type on miniemulsion polymerization systems stabilized by graphene oxide as sole surfactant. Journal of Polymer Science Part A, 2013, 51, 5153-5162.	2.5	53
121	Functionalization of Graphene Oxide for the Production of Novel Graphene-Based Polymeric and Colloidal Materials. Current Organic Chemistry, 2013, 17, 956-974.	0.9	27
122	Synergistic Effects of Compartmentalization and Nitroxide Exit/Entry in Nitroxide-Mediated Radical Polymerization in Dispersed Systems. ACS Macro Letters, 2012, 1, 692-696.	2.3	14
123	Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene. Polymer Chemistry, 2012, 3, 2801.	1.9	15
124	Rate-Enhanced Nitroxide-Mediated Miniemulsion Polymerization. ACS Macro Letters, 2012, 1, 748-752.	2.3	6
125	Size-Tunable Nanoparticle Synthesis by RAFT Polymerization in CO2-Induced Miniemulsions. Macromolecules, 2012, 45, 1803-1810.	2.2	20
126	Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization. Chemical Communications, 2012, 48, 11103.	2.2	49

#	Article	IF	CITATIONS
127	Synthesis of multi-block copolymer stars using a simple iterative Cu(0)-mediated radical polymerization technique. Polymer Chemistry, 2012, 3, 117-123.	1.9	116
128	Miniemulsion polymerization based on in situ surfactant formation without high-energy homogenization: effects of organic acid and counter ion. Polymer Journal, 2012, 44, 375-381.	1.3	14
129	Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. Journal of Polymer Science Part A, 2012, 50, 2981-2992.	2.5	88
130	Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chemistry, 2012, 4, 491-497.	6.6	135
131	Retardation in RAFT Polymerization: Does Cross-Termination Occur with Short Radicals Only?. Macromolecules, 2011, 44, 4187-4193.	2.2	47
132	Synthesis of Complex Multiblock Copolymers via a Simple Iterative Cu(0)-Mediated Radical Polymerization Approach. Macromolecules, 2011, 44, 8028-8033.	2.2	172
133	RAFT Polymerization under Microwave Irradiation: Toward Mechanistic Understanding. Macromolecules, 2011, 44, 1340-1346.	2.2	67
134	Synthesis of Biodegradable Hydrogel Nanoparticles for Bioapplications Using Inverse Miniemulsion RAFT Polymerization. Macromolecules, 2011, 44, 7167-7175.	2.2	46
135	High-Order Multiblock Copolymers via Iterative Cu(0)-Mediated Radical Polymerizations (SET-LRP): Toward Biological Precision. Journal of the American Chemical Society, 2011, 133, 11128-11131.	6.6	308
136	Controlled/living radical polymerization in nanoreactors: compartmentalization effects. Polymer Chemistry, 2011, 2, 534-549.	1.9	111
137	Nitroxide-Mediated Radical Polymerization in Microemulsion (Microemulsion NMP) ofn-Butyl Acrylate. Macromolecules, 2011, 44, 5599-5604.	2.2	29
138	Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Miniemulsion Based on In Situ Surfactant Generation. Australian Journal of Chemistry, 2011, 64, 1033.	0.5	8
139	Particle formation mechanism in radical polymerization in miniemulsion based on in situ surfactant formation without high energy homogenization. Polymer, 2011, 52, 4199-4207.	1.8	25
140	Nitroxideâ€mediated stabilizerâ€free inverse suspension polymerization of <i>N</i> â€isopropylacrylamide in supercritical carbon dioxide. Journal of Polymer Science Part A, 2011, 49, 1719-1723.	2.5	21
141	Chain transfer to solvent in the radical polymerization of <i>N</i> â€isopropylacrylamide. Journal of Polymer Science Part A, 2011, 49, 1856-1864.	2.5	20
142	Radical polymerization of CO ₂ â€induced emulsions: A novel route to polymeric nanoparticles. Journal of Polymer Science Part A, 2011, 49, 4307-4311.	2.5	8
143	Endâ€group fidelity of copper(0)â€meditated radical polymerization at high monomer conversion: an ESlâ€MS investigation. Journal of Polymer Science Part A, 2011, 49, 5313-5321.	2.5	84
144	Synthesis of Nanosized (<20 nm) Polymer Particles by Radical Polymerization in Miniemulsion Employing in situ Surfactant Formation. Macromolecular Rapid Communications, 2011, 32, 1669-1675.	2.0	21

45

#	Article	IF	CITATIONS
145	Compartmentalization Effects on Bimolecular Termination in Atom Transfer Radical Polymerization in Nanoreactors. Macromolecular Theory and Simulations, 2011, 20, 660-666.	0.6	14
146	Nitroxideâ€Mediated Radical Polymerization of Butyl Acrylate Using TEMPO: Improvement of Control Exploiting Nanoreactors?. Macromolecular Reaction Engineering, 2010, 4, 663-671.	0.9	12
147	Nitroxideâ€Mediated Radical Polymerization in Dispersed Systems: Compartmentalization and Nitroxide Partitioning. Macromolecular Theory and Simulations, 2010, 19, 11-23.	0.6	30
148	Nitroxide-mediated radical polymerization in nanoreactors: Factors influencing compartmentalization effects on bimolecular termination. Polymer, 2010, 51, 6168-6173.	1.8	10
149	Nitroxideâ€mediated radical polymerization of carbon dioxideâ€expanded methyl methacrylate. Journal of Polymer Science Part A, 2010, 48, 5636-5641.	2.5	10
150	Nitroxide-Mediated Radical Polymerization in Nanoreactors: Can Dilution or Increased Nitroxide Concentration Provide Benefits Similar to Compartmentalization?. Australian Journal of Chemistry, 2010, 63, 1195.	0.5	11
151	Controlled/Living <i>ab Initio</i> Emulsion Polymerization via a Glucose RAFT <i>stab</i> : Degradable Cross-Linked Glyco-Particles for Concanavalin A/ <i>Fim</i> H Conjugations to Cluster <i>E. coli</i> Bacteria. Macromolecules, 2010, 43, 5211-5221.	2.2	134
152	Effect of Monomer Loading and Pressure on Particle Formation in Nitroxide-Mediated Precipitation Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2010, 43, 914-919.	2.2	34
153	Nitroxide-Mediated Radical Polymerization in Miniemulsion On the Basis of in Situ Surfactant Formation without Use of Homogenization Device. Macromolecules, 2010, 43, 5914-5916.	2.2	34
154	Miniemulsion Polymerization Based on Low Energy Emulsification with Preservation of Initial Droplet Identity. Macromolecules, 2010, 43, 7905-7907.	2.2	28
155	Compartmentalization in Atom Transfer Radical Polymerization to High Conversion in Dispersed Systems: Effects of Diffusion-Controlled Reactions. Macromolecules, 2010, 43, 1387-1395.	2.2	37
156	Gelation and Hollow Particle Formation in Nitroxideâ€Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2009, 210, 140-149.	1.1	36
157	Compartmentalization in NMP in Dispersed Systems: Relative Contributions of Confined Space Effect and Segregation Effect Depending on Nitroxide Type. Macromolecular Theory and Simulations, 2009, 18, 277-286.	0.6	34
158	Network formation in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion: Effect of macroinitiator hydrophilicity. Polymer, 2009, 50, 1632-1636.	1.8	17
159	Controlled/living heterogeneous radical polymerization in supercritical carbon dioxide. Journal of Polymer Science Part A, 2009, 47, 3711-3728.	2.5	105
160	Preparation of onion-like multilayered particles comprising mainly poly(iso-butyl) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 142 1.8	Td (methacr
161	Effects of the oil–water interface on network formation in nanogel synthesis using nitroxide-mediated radical copolymerization of styrene/divinylbenzene in miniemulsion. Polymer, 2009, 50, 5661-5667.	1.8	17

162Compartmentalization in Atom Transfer Radical Polymerization of Styrene in Dispersed Systems:
Effects of Target Molecular Weight and Halide End Group. Macromolecules, 2009, 42, 2488-2496.2.2

#	Article	IF	CITATIONS
163	Nitroxide-Mediated Radical Polymerization of Styrene in Aqueous Microemulsion: Initiator Efficiency, Compartmentalization, and Nitroxide Phase Transfer. Macromolecules, 2009, 42, 6944-6952.	2.2	38
164	Nitroxide-mediated controlled/living radical copolymerizations with macromonomers. Reactive and Functional Polymers, 2008, 68, 692-700.	2.0	16
165	Nitroxideâ€Mediated Radical Polymerization of <i>N</i> â€ <i>tert</i> â€Butylacrylamide. Macromolecular Chemistry and Physics, 2008, 209, 2434-2444.	1.1	18
166	Quantification of spontaneous initiation in radical polymerization of styrene in aqueous miniemulsion at high temperature. Polymer, 2008, 49, 883-892.	1.8	27
167	TEMPO-mediated radical polymerization of styrene in aqueous miniemulsion: Macroinitiator concentration effects. Polymer, 2008, 49, 3428-3435.	1.8	28
168	Nitroxide-mediated precipitation polymerization of styrene in supercritical carbon dioxide: Effects of monomer loading and nitroxide partitioning on control. European Polymer Journal, 2008, 44, 4037-4046.	2.6	23
169	Use of Fluorescence-Labelled Macroinitiator to Investigate Nucleation Mechanism in Nitroxide-Mediated Crosslinking Polymerization in Aqueous Miniemulsion. Polymer Journal, 2008, 40, 298-299.	1.3	6
170	Controlled/Living Radical Polymerization in Dispersed Systems. Chemical Reviews, 2008, 108, 3747-3794.	23.0	617
171	Improved Control in Nitroxide-Mediated Radical Polymerization Using Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 2732-2734.	2.2	31
172	Atom Transfer Radical Polymerization in Miniemulsion:Â Partitioning Effects of Copper(I) and Copper(II) on Polymerization Rate, Livingness, and Molecular Weight Distributionâ€. Macromolecules, 2007, 40, 3062-3069.	2.2	67
173	Mechanistic Investigation of Particle Size Effects in TEMPO- Mediated Radical Polymerization of Styrene in Aqueous Miniemulsion. Macromolecules, 2007, 40, 8663-8672.	2.2	56
174	Determination of the Propagation Rate Coefficient of Vinyl Pivalate Based on EPR Quantification of the Propagating Radical Concentration. Macromolecular Chemistry and Physics, 2007, 208, 2403-2411.	1.1	15
175	Nitroxideâ€Mediated Radical Precipitation Polymerization of Styrene in Supercritical Carbon Dioxide. Macromolecular Chemistry and Physics, 2007, 208, 1813-1822.	1.1	39
176	Nitroxideâ€Mediated Radical Polymerization in Microemulsion. Macromolecular Rapid Communications, 2007, 28, 2346-2353.	2.0	40
177	Atom Transfer Radical Polymerization of <i>iso</i> â€Butyl Methacrylate in Microemulsion with Cationic and Nonâ€Ionic Emulsifiers. Macromolecular Rapid Communications, 2007, 28, 2354-2360.	2.0	34
178	Compartmentalization in TEMPO-Mediated Radical Polymerization in Dispersed Systems: Effects of Macroinitiator Concentration. Macromolecular Theory and Simulations, 2007, 16, 221-226.	0.6	62
179	Gel formation and primary chain lengths in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion. Polymer, 2007, 48, 1229-1236.	1.8	50
180	Mechanical properties of cross-linked polymer particles prepared by nitroxide-mediated radical polymerization in aqueous micro-suspension. Polymer, 2007, 48, 3836-3843.	1.8	29

#	Article	IF	CITATIONS
181	The role of excess nitroxide in the SG1 (N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]) Tj ETQq1 1 0. 45, 2194-2203.	784314 rgB 2.5	T /Overloc 72
182	Nitroxideâ€mediated radical polymerization in miniemulsion: Bimolecular termination in monomerâ€free model systems. Journal of Polymer Science Part A, 2007, 45, 4995-5004.	2.5	20
183	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-b-methyl methacrylate) Stabilizerâ€. Macromolecules, 2006, 39, 6853-6860.	2.2	58
184	Compartmentalization in Nitroxide-Mediated Radical Polymerization in Dispersed Systems. Macromolecules, 2006, 39, 8959-8967.	2.2	136
185	Copolymerization of eight-membered ring-opening allylic sulfide lactone and disulfide monomers with methyl methacrylate and styrene. European Polymer Journal, 2006, 42, 2475-2485.	2.6	7
186	Nitroxide-mediated radical polymerization of styrene: Experimental evidence of chain transfer to monomer. Polymer, 2006, 47, 7900-7908.	1.8	51
187	Utility of propenyl groups in free radical polymerization: Effects of steric hindrance on formation and reaction behavior as versatile intermediates. Progress in Polymer Science, 2006, 31, 835-877.	11.8	61
188	Network Formation in Nitroxide-Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2006, 207, 1732-1741.	1.1	46
189	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-block-styrene) Alkoxyamine as Initiator and Stabilizer. Macromolecular Rapid Communications, 2006, 27, 1465-1471.	2.0	42
190	Particle Size Effects in TEMPO-Mediated Radical Polymerization of Styrene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2006, 27, 2014-2018.	2.0	42
191	Effects of Laplace Pressure on Propagation and Termination in Aqueous Heterogeneous Free Radical Polymerization. Macromolecular Theory and Simulations, 2006, 15, 40-45.	0.6	8
192	Compartmentalization in Atom Transfer Radical Polymerization (ATRP) in Dispersed Systems. Macromolecular Theory and Simulations, 2006, 15, 608-613.	0.6	98
193	Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Progress in Polymer Science, 2005, 30, 605-643.	11.8	137
194	First nitroxide-mediated free radical dispersion polymerizations of styrene in supercritical carbon dioxide. Polymer, 2005, 46, 9769-9777.	1.8	53
195	Mechanism and kinetics of the free radical ring-opening polymerization of cyclic allylic sulfide lactones. Polymer, 2005, 46, 12046-12056.	1.8	23
196	Nitroxide-Mediated Controlled/Living Free Radical Copolymerization of Styrene and Divinylbenzene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2005, 26, 955-960.	2.0	80
197	Addition-Fragmentation Chain Transfer to Polymer in the Free Radical Ring-Opening Polymerization of an Eight-membered Cyclic Allylic Sulfide Monomer. Macromolecular Theory and Simulations, 2005, 14, 109-116.	0.6	6
198	Nitroxide-Mediated Radical Polymerization in Miniemulsion at Stationary State: Rationale for Independence of Polymerization Rate on Nitroxide Partitioning Using Oil-Phase Initiation. Macromolecular Theory and Simulations, 2005, 14, 415-420.	0.6	35

#	Article	IF	CITATIONS
199	Instantaneous Copolymer Composition in High Conversion Copolymerization of Acrylonitrile and Methyl Acrylate Assessed by in Situ 13C NMR Measurements of Individual Monomer Reaction Rates. Macromolecules, 2005, 38, 2173-2179.	2.2	8
200	Mechanism and Kinetics of the Free Radical Ring-Opening Polymerization of Eight-Membered Cyclic Allylic Disulfide Monomers. Macromolecules, 2005, 38, 2143-2147.	2.2	17
201	Preparation of macromonomers by copolymerization of methyl acrylate dimer involving ? fragmentation. Journal of Polymer Science Part A, 2004, 42, 597-607.	2.5	12
202	Addition-fragmentation chain transfer: Molecular weight distributions and retardation in the system methyl methacrylate/methyl α-(bromomethyl)acrylate. Journal of Polymer Science Part A, 2004, 42, 2640-2650.	2.5	11
203	Macromonomer synthesis using ?-(2-methyl-2-phenylpropyl)acrylates as addition-fragmentation chain-transfer agents expelling the cumyl radical. Journal of Polymer Science Part A, 2004, 42, 6021-6030.	2.5	8
204	High-Temperature Propagation and Termination Kinetics of Styrene to High Conversion Investigated by Electron Paramagnetic Resonance Spectroscopy. Macromolecular Chemistry and Physics, 2004, 205, 778-785.	1.1	32
205	Influence of Mid-Chain Radicals on Acrylate Free Radical Polymerization: Effect of Ester Alkyl Group. Macromolecular Chemistry and Physics, 2004, 205, 1829-1839.	1.1	53
206	First Nitroxide-Mediated Controlled/Living Free Radical Polymerization in an Ionic Liquid. Macromolecular Rapid Communications, 2004, 25, 930-934.	2.0	69
207	Chain Transfer and Efficiency of End-Group Introduction in Free Radical Polymerization of Methyl Methacrylate in the Presence of Poly(methyl methacrylate) Macromonomer. Macromolecular Rapid Communications, 2004, 25, 1905-1911.	2.0	16
208	Macromonomer Synthesis Using Oligomers of ω-Unsaturated Methacrylate as Additionâ^'Fragmentation Chain Transfer Agents:Â Increased Efficiency by Manipulation of Steric Hindrance. Macromolecules, 2004, 37, 2363-2370.	2.2	21
209	Propagation and Termination in Free Radical Polymerization of Styrene to High Conversion Investigated by Electron Spin Resonance Spectroscopy. ACS Symposium Series, 2003, , 72-85.	0.5	5
210	Reactivities ofω-Unsaturated Methacrylate Oligomers towardtert-Butoxy Radicals: Investigation of the Effect of Degree of Polymerization and Ester Alkyl Group. Macromolecular Chemistry and Physics, 2003, 204, 1882-1888.	1.1	8
211	Addition-Fragmentation Chain Transfer Involving Dimers ofα-Methylvinyl Monomers Studied by ESR Spectroscopy: Competition between Fragmentation and Bimolecular Termination. Macromolecular Rapid Communications, 2003, 24, 197-201.	2.0	9
212	Free Radical Bulk Polymerization of Styrene: Simulation of Molecular Weight Distributions to High Conversion Using Experimentally Obtained Rate Coefficients. Macromolecular Theory and Simulations, 2003, 12, 379-385.	0.6	16
213	Detailed studies of the initiation step in free radical polymerization of $\hat{1}\pm$ -(substituted methyl)acrylates by electron paramagnetic resonance spectroscopy. Polymer, 2003, 44, 2883-2889.	1.8	7
214	New aspects of unsaturated polyester resin synthesis. Part I: modelling and simulation of reactant sequence length distributions in stepwise polymerization. Polymer International, 2003, 52, 104-112.	1.6	8
215	New aspects of unsaturated polyester resin synthesis. Part 2. Reactant sequence distribution and its effect on cure kinetics. Polymer International, 2003, 52, 749-756.	1.6	14
216	Early propagation kinetics in the free radical polymerization of methacrylonitrile investigated by a nitroxide trapping technique. Polymer International, 2003, 52, 1671-1675.	1.6	7

#	Article	IF	CITATIONS
217	Initiation in the free radical (co)polymerization of dialkyl fumarates and dicyclohexyl fumarate/tert-butyl vinyl ether investigated by a nitroxide trapping technique. Polymer International, 2003, 52, 1683-1688.	1.6	3
218	Reaction behavior of sterically hindered ?-(substituted methyl)acrylic esters withtert-butoxy radicals studied by a nitroxide trapping technique. Polymer International, 2003, 52, 1676-1682.	1.6	4
219	Mechanism and kinetics of the imidazolidinone nitroxide-mediated free-radical polymerization of styrene. Journal of Polymer Science Part A, 2003, 41, 327-334.	2.5	18
220	Influence of nitroxide structure on the 2,5- and 2,6-spirodicyclohexyl substituted cyclic nitroxide-mediated free-radical polymerization of styrene. Journal of Polymer Science Part A, 2003, 41, 3892-3900.	2.5	17
221	Effect of mixing sequence on the properties of carbon black and silica filled rubber. Plastics, Rubber and Composites, 2003, 32, 291-296.	0.9	3
222	Prevention of Rubber Degradation by Use of Microencapsulated Antioxidants. Rubber Chemistry and Technology, 2003, 76, 948-956.	0.6	4
223	Macromonomer Preparation by Radical Polymerization and Copolymerization of the Unsaturated Tetramer of Methyl Acrylate. Polymer Journal, 2003, 35, 491-500.	1.3	11
224	Effects of Storage and Service on Tire Performance: Oil Component Content and Swelling Behavior. Rubber Chemistry and Technology, 2003, 76, 507-516.	0.6	12
225	Penultimate Unit Effects in Free Radical Copolymerization Studied Using the Individual Propagating Radical Concentrations from Electron Spin Resonance Spectroscopy. Macromolecules, 2002, 35, 8209-8215.	2.2	5
226	KINETICS OF POLYESTERIFICATION: MODELLING OF THE CONDENSATION OF MALEIC ANHYDRIDE, PHTHALIC ANHYDRIDE, AND 1,2-PROPYLENE GLYCOL. Polymer-Plastics Technology and Engineering, 2002, 10, 41-57.	0.7	24
227	Free Radical Polymerization of Styrene:Â Mass Spectrometric Identification of the First 15 Nitroxide-Trapped Oligomers and Estimated Propagation Rate Coefficients. Macromolecules, 2002, 35, 7232-7237.	2.2	37
228	Free volume-based modelling of free radical crosslinking polymerisation of unsaturated polyesters. Polymer, 2002, 43, 2039-2048.	1.8	16
229	Propagation and termination kinetics in high conversion free radical co-polymerization of styrene/divinylbenzene investigated by electron spin resonance and Fourier-transform near-infrared spectroscopy. Polymer, 2002, 43, 7027-7035.	1.8	23
230	High-Conversion Free-Radical Bulk Polymerization of Styrene:Â Termination Kinetics Studied by Electron Spin Resonance, Fourier Transform Near-Infrared Spectroscopy, and Gel Permeation Chromatography. Macromolecules, 2001, 34, 7686-7691.	2.2	52
231	Alkoxyamine-mediated ?living? radical polymerization: MS investigation of the early stages of styrene polymerization initiated by cumyl-TEISO. Journal of Polymer Science Part A, 2001, 39, 1232-1241.	2.5	26
232	Free-Radical Bulk Polymerization of Styrene: ESR and Near-Infrared Spectroscopic Study of the Entire Conversion Range. Macromolecular Chemistry and Physics, 2001, 202, 824-829.	1.1	29
233	Free Radical Polymerization of Acrylonitrile:  Mass Spectrometric Identification of the Nitroxide-Trapped Oligomers Formed in and Estimated Rate Constants for Each of the First Eight Propagation Steps. Macromolecules, 1999, 32, 8041-8045.	2.2	38
234	Thermal and Mechanical Properties of Polyurethanes Derived from Mono- and Disaccharides. Polymer International, 1997, 42, 1-8.	1.6	48

#	ARTICLE	IF	CITATIONS
235	TG-FTIR studies on biodegradable polyurethanes containing mono- and disaccharide components. Thermochimica Acta, 1996, 282-283, 433-441.	1.2	36
236	A new method for the determination of the Arrhenius constants for the cure process of unsaturated polyester resins based on a mechanistic model. Thermochimica Acta, 1996, 289, 209-221.	1.2	20
237	General Chemistry of Radical Polymerization. , 0, , 117-186.		18
238	Solvent Effects on the Synthesis of Polymeric Nanoparticles via Block Copolymer Self-Assembly Using Microporous Membranes. Materials Science Forum, 0, 1000, 324-330.	0.3	1
239	Multisegmented polymers via step-growth and RAFT miniemulsion polymerization. Polymer Chemistry, 0, , .	1.9	2