Per B Zetterlund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688718/publications.pdf

Version: 2024-02-01

239 papers

9,911 citations

51 h-index 49909

g-index

245 all docs

245 docs citations

times ranked

245

5465 citing authors

#	Article	IF	CITATIONS
1	Controlled/Living Radical Polymerization in Dispersed Systems. Chemical Reviews, 2008, 108, 3747-3794.	47.7	617
2	Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nature Communications, 2013, 4, 2505.	12.8	403
3	Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chemical Reviews, 2015, 115, 9745-9800.	47.7	393
4	High-Order Multiblock Copolymers via Iterative Cu(0)-Mediated Radical Polymerizations (SET-LRP): Toward Biological Precision. Journal of the American Chemical Society, 2011, 133, 11128-11131.	13.7	308
5	Strategies for reduction of graphene oxide – A comprehensive review. Chemical Engineering Journal, 2021, 405, 127018.	12.7	252
6	Pushing the Limit of the RAFT Process: Multiblock Copolymers by One-Pot Rapid Multiple Chain Extensions at Full Monomer Conversion. Macromolecules, 2014, 47, 3451-3460.	4.8	208
7	Synthesis of Complex Multiblock Copolymers via a Simple Iterative Cu(0)-Mediated Radical Polymerization Approach. Macromolecules, 2011, 44, 8028-8033.	4.8	172
8	Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. Macromolecules, 2014, 47, 639-649.	4.8	144
9	The limits of precision monomer placement in chain growth polymerization. Nature Communications, 2016, 7, 10514.	12.8	141
10	Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Progress in Polymer Science, 2005, 30, 605-643.	24.7	137
11	Compartmentalization in Nitroxide-Mediated Radical Polymerization in Dispersed Systems. Macromolecules, 2006, 39, 8959-8967.	4.8	136
12	Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chemistry, 2012, 4, 491-497.	13.6	135
13	Controlled/Living <i>ab Initio</i> Emulsion Polymerization via a Glucose RAFT <i>stab</i> Cross-Linked Glyco-Particles for Concanavalin A/ <i> Fim</i> H Conjugations to Cluster <i>E. coli</i> Bacteria. Macromolecules, 2010, 43, 5211-5221.	4.8	134
14	High Molecular Weight Block Copolymers by Sequential Monomer Addition via Cu(0)-Mediated Living Radical Polymerization (SET-LRP): An Optimized Approach. ACS Macro Letters, 2013, 2, 896-900.	4.8	124
15	Photopolymerization in dispersed systems. Progress in Polymer Science, 2018, 84, 47-88.	24.7	118
16	Synthesis of multi-block copolymer stars using a simple iterative Cu(0)-mediated radical polymerization technique. Polymer Chemistry, 2012, 3, 117-123.	3.9	116
17	Controlled/living radical polymerization in nanoreactors: compartmentalization effects. Polymer Chemistry, 2011, 2, 534-549.	3.9	111
18	Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chemical Society Reviews, 2016, 45, 5055-5084.	38.1	108

#	Article	IF	Citations
19	Controlled/living heterogeneous radical polymerization in supercritical carbon dioxide. Journal of Polymer Science Part A, 2009, 47, 3711-3728.	2.3	105
20	Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors. Macromolecules, 2018, 51, 5165-5172.	4.8	105
21	Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium. Polymer Chemistry, 2014, 5, 6990-7003.	3.9	101
22	Graphene oxide (GO) nanosheets as oil-in-water emulsion stabilizers: Influence of oil phase polarity. Journal of Colloid and Interface Science, 2015, 442, 67-74.	9.4	99
23	Compartmentalization in Atom Transfer Radical Polymerization (ATRP) in Dispersed Systems. Macromolecular Theory and Simulations, 2006, 15, 608-613.	1.4	98
24	Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. Journal of Polymer Science Part A, 2012, 50, 2981-2992.	2.3	88
25	Polymer Synthesis in Continuous Flow Reactors. Progress in Polymer Science, 2020, 107, 101256.	24.7	87
26	Endâ€group fidelity of copper(0)â€meditated radical polymerization at high monomer conversion: an ESIâ€MS investigation. Journal of Polymer Science Part A, 2011, 49, 5313-5321.	2.3	84
27	Nitroxide-Mediated Controlled/Living Free Radical Copolymerization of Styrene and Divinylbenzene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2005, 26, 955-960.	3.9	80
28	Visible-Light-Regulated Controlled/Living Radical Polymerization in Miniemulsion. ACS Macro Letters, 2015, 4, 1139-1143.	4.8	80
29	Synthesis of polystyrene nanoparticles "armoured―with nanodimensional graphene oxide sheets by miniemulsion polymerization. Journal of Polymer Science Part A, 2013, 51, 47-58.	2.3	77
30	Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polymer Chemistry, 2013, 4, 106-112.	3.9	75
31	The role of excess nitroxide in the SG1 (N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]) Tj ETQq1 1 0.7 45, 2194-2203.	784314 rgl 2.3	BT /Overlock 72
32	Hollow hybrid polymer–graphene oxide nanoparticles via Pickering miniemulsion polymerization. Nanoscale, 2014, 6, 8590.	5.6	70
33	Sequenceâ€Controlled Multiblock Copolymers via RAFT Polymerization: Modeling and Simulations. Macromolecular Theory and Simulations, 2014, 23, 331-339.	1.4	70
34	First Nitroxide-Mediated Controlled/Living Free Radical Polymerization in an Ionic Liquid. Macromolecular Rapid Communications, 2004, 25, 930-934.	3.9	69
35	Grafting of P(OEGA) Onto Magnetic Nanoparticles Using Cu(0) Mediated Polymerization: Comparing Grafting "from―and "to―Approaches in the Search for the Optimal Material Design of Nanoparticle MRI Contrast Agents. Macromolecules, 2013, 46, 6038-6047.	4.8	68
36	Atom Transfer Radical Polymerization in Miniemulsion: Partitioning Effects of Copper(I) and Copper(II) on Polymerization Rate, Livingness, and Molecular Weight Distributionâ€. Macromolecules, 2007, 40, 3062-3069.	4.8	67

#	Article	IF	CITATIONS
37	RAFT Polymerization under Microwave Irradiation: Toward Mechanistic Understanding. Macromolecules, 2011, 44, 1340-1346.	4.8	67
38	Exploitation of the Nanoreactor Concept for Efficient Synthesis of Multiblock Copolymers via MacroRAFT-Mediated Emulsion Polymerization. ACS Macro Letters, 2019, 8, 989-995.	4.8	67
39	Polymerization induced self-assembly: tuning of nano-object morphology by use of CO ₂ . Polymer Chemistry, 2015, 6, 2249-2254.	3.9	65
40	Compartmentalization in TEMPO-Mediated Radical Polymerization in Dispersed Systems: Effects of Macroinitiator Concentration. Macromolecular Theory and Simulations, 2007, 16, 221-226.	1.4	62
41	Polymerization induced self-assembly: tuning of morphology using ionic strength and pH. Polymer Chemistry, 2017, 8, 3082-3089.	3.9	62
42	Utility of propenyl groups in free radical polymerization: Effects of steric hindrance on formation and reaction behavior as versatile intermediates. Progress in Polymer Science, 2006, 31, 835-877.	24.7	61
43	Preparation of Composite Materials by Using Graphene Oxide as a Surfactant in Ab Initio Emulsion Polymerization Systems. ACS Macro Letters, 2013, 2, 630-634.	4.8	60
44	Inverse Miniemulsion Periphery RAFT Polymerization: A Convenient Route to Hollow Polymeric Nanoparticles with an Aqueous Core. Macromolecules, 2013, 46, 2118-2127.	4.8	59
45	Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 2019, 52, 1609-1619.	4.8	59
46	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-b-methyl methacrylate) Stabilizerâ€. Macromolecules, 2006, 39, 6853-6860.	4.8	58
47	Mechanistic Investigation of Particle Size Effects in TEMPO- Mediated Radical Polymerization of Styrene in Aqueous Miniemulsion. Macromolecules, 2007, 40, 8663-8672.	4.8	56
48	Nano-Engineered Multiblock Copolymer Nanoparticles via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization. Macromolecules, 2019, 52, 2965-2974.	4.8	54
49	Influence of Mid-Chain Radicals on Acrylate Free Radical Polymerization: Effect of Ester Alkyl Group. Macromolecular Chemistry and Physics, 2004, 205, 1829-1839.	2.2	53
50	First nitroxide-mediated free radical dispersion polymerizations of styrene in supercritical carbon dioxide. Polymer, 2005, 46, 9769-9777.	3.8	53
51	Influence of monomer type on miniemulsion polymerization systems stabilized by graphene oxide as sole surfactant. Journal of Polymer Science Part A, 2013, 51, 5153-5162.	2.3	53
52	Biocompatible Glycopolymer Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization for the Delivery of Gemcitabine. Biomacromolecules, 2015, 16, 2144-2156.	5.4	53
53	RAFT iniferter polymerization in miniemulsion using visible light. Polymer Chemistry, 2017, 8, 3965-3970.	3.9	53
54	The Nanoreactor Concept: Kinetic Features of Compartmentalization in Dispersed Phase Polymerization. Macromolecules, 2019, 52, 7963-7976.	4.8	53

#	Article	IF	CITATIONS
55	High-Conversion Free-Radical Bulk Polymerization of Styrene:Â Termination Kinetics Studied by Electron Spin Resonance, Fourier Transform Near-Infrared Spectroscopy, and Gel Permeation Chromatography. Macromolecules, 2001, 34, 7686-7691.	4.8	52
56	Nitroxide-mediated radical polymerization of styrene: Experimental evidence of chain transfer to monomer. Polymer, 2006, 47, 7900-7908.	3.8	51
57	Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.	3.9	51
58	Gel formation and primary chain lengths in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion. Polymer, 2007, 48, 1229-1236.	3.8	50
59	Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization. Chemical Communications, 2012, 48, 11103.	4.1	49
60	Nano-sized graphene oxide as sole surfactant in miniemulsion polymerization for nanocomposite synthesis: Effect of pH and ionic strength. Polymer, 2014, 55, 3490-3497.	3.8	49
61	Thermal and Mechanical Properties of Polyurethanes Derived from Mono- and Disaccharides. Polymer International, 1997, 42, 1-8.	3.1	48
62	A new paradigm in polymerization induced self-assembly (PISA): Exploitation of "non-living― addition–fragmentation chain transfer (AFCT) polymerization. Polymer Chemistry, 2017, 8, 4177-4181.	3.9	48
63	Retardation in RAFT Polymerization: Does Cross-Termination Occur with Short Radicals Only?. Macromolecules, 2011, 44, 4187-4193.	4.8	47
64	Network Formation in Nitroxide-Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2006, 207, 1732-1741.	2.2	46
65	Synthesis of Biodegradable Hydrogel Nanoparticles for Bioapplications Using Inverse Miniemulsion RAFT Polymerization. Macromolecules, 2011, 44, 7167-7175.	4.8	46
66	Compartmentalization in Atom Transfer Radical Polymerization of Styrene in Dispersed Systems: Effects of Target Molecular Weight and Halide End Group. Macromolecules, 2009, 42, 2488-2496.	4.8	45
67	Nitroxide-Mediated Radical Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide Using a Poly(dimethylsiloxane-block-styrene) Alkoxyamine as Initiator and Stabilizer. Macromolecular Rapid Communications, 2006, 27, 1465-1471.	3.9	42
68	Particle Size Effects in TEMPO-Mediated Radical Polymerization of Styrene in Aqueous Miniemulsion. Macromolecular Rapid Communications, 2006, 27, 2014-2018.	3.9	42
69	Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer, 2015, 63, 1-9.	3.8	42
70	Ambient-Temperature Waterborne Polymer/rGO Nanocomposite Films: Effect of rGO Distribution on Electrical Conductivity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48450-48458.	8.0	42
71	Radical Polymerization of Alkyl 2-Cyanoacrylates. Molecules, 2018, 23, 465.	3.8	41
72	Nitroxideâ€Mediated Radical Polymerization in Microemulsion. Macromolecular Rapid Communications, 2007, 28, 2346-2353.	3.9	40

#	Article	IF	CITATIONS
73	Nitroxideâ€Mediated Radical Precipitation Polymerization of Styrene in Supercritical Carbon Dioxide. Macromolecular Chemistry and Physics, 2007, 208, 1813-1822.	2.2	39
74	Free Radical Polymerization of Acrylonitrile:  Mass Spectrometric Identification of the Nitroxide-Trapped Oligomers Formed in and Estimated Rate Constants for Each of the First Eight Propagation Steps. Macromolecules, 1999, 32, 8041-8045.	4.8	38
75	Nitroxide-Mediated Radical Polymerization of Styrene in Aqueous Microemulsion: Initiator Efficiency, Compartmentalization, and Nitroxide Phase Transfer. Macromolecules, 2009, 42, 6944-6952.	4.8	38
76	Free Radical Polymerization of Styrene:Â Mass Spectrometric Identification of the First 15 Nitroxide-Trapped Oligomers and Estimated Propagation Rate Coefficients. Macromolecules, 2002, 35, 7232-7237.	4.8	37
77	Compartmentalization in Atom Transfer Radical Polymerization to High Conversion in Dispersed Systems: Effects of Diffusion-Controlled Reactions. Macromolecules, 2010, 43, 1387-1395.	4.8	37
78	Synthesis of pH-Responsive Nanocapsules via Inverse Miniemulsion Periphery RAFT Polymerization and Post-Polymerization Reaction. ACS Macro Letters, 2014, 3, 935-939.	4.8	37
79	TG-FTIR studies on biodegradable polyurethanes containing mono- and disaccharide components. Thermochimica Acta, 1996, 282-283, 433-441.	2.7	36
80	Gelation and Hollow Particle Formation in Nitroxideâ€Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2009, 210, 140-149.	2.2	36
81	Polymerizationâ€Induced Selfâ€Assembly under Compressed CO ₂ : Control of Morphology Using a CO ₂ â€Responsive MacroRAFT Agent. Macromolecular Rapid Communications, 2019, 40, e1800335.	3.9	36
82	RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules, 2021, 54, 736-746.	4.8	36
83	Nitroxide-Mediated Radical Polymerization in Miniemulsion at Stationary State: Rationale for Independence of Polymerization Rate on Nitroxide Partitioning Using Oil-Phase Initiation. Macromolecular Theory and Simulations, 2005, 14, 415-420.	1.4	35
84	Polymeric Nanocapsules for Enzyme Stabilization in Organic Solvents. Macromolecules, 2018, 51, 438-446.	4.8	35
85	Scalable Aqueous Reversible Addition–Fragmentation Chain Transfer Photopolymerization-Induced Self-Assembly of Acrylamides for Direct Synthesis of Polymer Nanoparticles for Potential Drug Delivery Applications. ACS Applied Polymer Materials, 2019, 1, 1251-1256.	4.4	35
86	Atom Transfer Radical Polymerization of <i>iso</i> â€Butyl Methacrylate in Microemulsion with Cationic and Nonâ€Ionic Emulsifiers. Macromolecular Rapid Communications, 2007, 28, 2354-2360.	3.9	34
87	Compartmentalization in NMP in Dispersed Systems: Relative Contributions of Confined Space Effect and Segregation Effect Depending on Nitroxide Type. Macromolecular Theory and Simulations, 2009, 18, 277-286.	1.4	34
88	Effect of Monomer Loading and Pressure on Particle Formation in Nitroxide-Mediated Precipitation Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2010, 43, 914-919.	4.8	34
89	Nitroxide-Mediated Radical Polymerization in Miniemulsion On the Basis of in Situ Surfactant Formation without Use of Homogenization Device. Macromolecules, 2010, 43, 5914-5916.	4.8	34
90	Electrically conductive polymer/rGO nanocomposite films at ambient temperature <i>via</i> miniemulsion polymerization using GO as surfactant. Nanoscale, 2019, 11, 6566-6570.	5 . 6	34

#	Article	IF	Citations
91	Successful Miniemulsion ATRP Using an Anionic Surfactant: Minimization of Deactivator Loss by Addition of a Halide Salt. Macromolecules, 2014, 47, 6230-6237.	4.8	33
92	Pickering miniemulsion polymerization using graphene oxide: effect of addition of a conventional surfactant. Polymer Chemistry, 2018, 9, 3368-3378.	3.9	33
93	High-Temperature Propagation and Termination Kinetics of Styrene to High Conversion Investigated by Electron Paramagnetic Resonance Spectroscopy. Macromolecular Chemistry and Physics, 2004, 205, 778-785.	2.2	32
94	Improved Control in Nitroxide-Mediated Radical Polymerization Using Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 2732-2734.	4.8	31
95	Preparation of onion-like multilayered particles comprising mainly poly(iso-butyl) Tj ETQq1 1 0.784314 rgBT /Ove	rlock 10 T	f 50 582 To
96	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.3	31
97	Nitroxideâ€Mediated Radical Polymerization in Dispersed Systems: Compartmentalization and Nitroxide Partitioning. Macromolecular Theory and Simulations, 2010, 19, 11-23.	1.4	30
98	Miniemulsion polymerization using graphene oxide as surfactant: In situ grafting of polymers. Carbon, 2019, 149, 445-451.	10.3	30
99	Free-Radical Bulk Polymerization of Styrene: ESR and Near-Infrared Spectroscopic Study of the Entire Conversion Range. Macromolecular Chemistry and Physics, 2001, 202, 824-829.	2.2	29
100	Mechanical properties of cross-linked polymer particles prepared by nitroxide-mediated radical polymerization in aqueous micro-suspension. Polymer, 2007, 48, 3836-3843.	3.8	29
101	Nitroxide-Mediated Radical Polymerization in Microemulsion (Microemulsion NMP) ofn-Butyl Acrylate. Macromolecules, 2011, 44, 5599-5604.	4.8	29
102	Low-Dispersity Polymers in <i>Ab Initio</i> Emulsion Polymerization: Improved MacroRAFT Agent Performance in Heterogeneous Media. Macromolecules, 2020, 53, 7672-7683.	4.8	29
103	Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polymer Chemistry, 2021, 12, 122-133.	3.9	29
104	TEMPO-mediated radical polymerization of styrene in aqueous miniemulsion: Macroinitiator concentration effects. Polymer, 2008, 49, 3428-3435.	3.8	28
105	Miniemulsion Polymerization Based on Low Energy Emulsification with Preservation of Initial Droplet Identity. Macromolecules, 2010, 43, 7905-7907.	4.8	28
106	Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polymer Chemistry, 2020, 11, 3217-3224.	3.9	28
107	Quantification of spontaneous initiation in radical polymerization of styrene in aqueous miniemulsion at high temperature. Polymer, 2008, 49, 883-892.	3.8	27
108	Functionalization of Graphene Oxide for the Production of Novel Graphene-Based Polymeric and Colloidal Materials. Current Organic Chemistry, 2013, 17, 956-974.	1.6	27

#	Article	IF	Citations
109	Synthesis of complex macromolecules using iterative copper(0)-mediated radical polymerization. Journal of Polymer Science Part A, 2014, 52, 2083-2098.	2.3	27
110	Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules, 2019, 52, 4492-4499.	4.8	27
111	Mechanistic Aspects of the Functionalization of Graphene Oxide with Ethylene Diamine: Implications for Energy Storage Applications. ACS Applied Nano Materials, 2021, 4, 3232-3240.	5.0	27
112	Alkoxyamine-mediated ?living? radical polymerization: MS investigation of the early stages of styrene polymerization initiated by cumyl-TEISO. Journal of Polymer Science Part A, 2001, 39, 1232-1241.	2.3	26
113	Synthesis of graphene-based polymeric nanocomposites using emulsion techniques. Progress in Polymer Science, 2022, 125, 101476.	24.7	26
114	Particle formation mechanism in radical polymerization in miniemulsion based on in situ surfactant formation without high energy homogenization. Polymer, 2011, 52, 4199-4207.	3.8	25
115	KINETICS OF POLYESTERIFICATION: MODELLING OF THE CONDENSATION OF MALEIC ANHYDRIDE, PHTHALIC ANHYDRIDE, AND 1,2-PROPYLENE GLYCOL. Polymer-Plastics Technology and Engineering, 2002, 10, 41-57.	0.7	24
116	Polymerization-induced self-assembly based on ATRP in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 2658-2665.	3.9	24
117	Influence of Anionic Surfactants on the Fundamental Properties of Polymer/Reduced Graphene Oxide Nanocomposite Films. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18338-18347.	8.0	24
118	Influence of Polymer Matrix on Polymer/Graphene Oxide Nanocomposite Intrinsic Properties. ACS Applied Polymer Materials, 2021, 3, 5145-5154.	4.4	24
119	Propagation and termination kinetics in high conversion free radical co-polymerization of styrene/divinylbenzene investigated by electron spin resonance and Fourier-transform near-infrared spectroscopy. Polymer, 2002, 43, 7027-7035.	3 . 8	23
120	Mechanism and kinetics of the free radical ring-opening polymerization of cyclic allylic sulfide lactones. Polymer, 2005, 46, 12046-12056.	3.8	23
121	Nitroxide-mediated precipitation polymerization of styrene in supercritical carbon dioxide: Effects of monomer loading and nitroxide partitioning on control. European Polymer Journal, 2008, 44, 4037-4046.	5.4	23
122	Synthesis of diamine functionalised graphene oxide and its application in the fabrication of electrically conducting reduced graphene oxide/polymer nanocomposite films. Nanoscale Advances, 2020, 2, 4702-4712.	4.6	23
123	Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polymer, 2016, 105, 276-283.	3.8	22
124	Macromonomer Synthesis Using Oligomers of I‰-Unsaturated Methacrylate as Additionâ^'Fragmentation Chain Transfer Agents:Â Increased Efficiency by Manipulation of Steric Hindrance. Macromolecules, 2004, 37, 2363-2370.	4.8	21
125	Nitroxideâ€mediated stabilizerâ€free inverse suspension polymerization of <i>N</i> à€isopropylacrylamide in supercritical carbon dioxide. Journal of Polymer Science Part A, 2011, 49, 1719-1723.	2.3	21
126	Synthesis of Nanosized (<20 nm) Polymer Particles by Radical Polymerization in Miniemulsion Employing in situ Surfactant Formation. Macromolecular Rapid Communications, 2011, 32, 1669-1675.	3.9	21

#	Article	IF	CITATIONS
127	Polymer-inorganic hybrid nanoparticles of various morphologies via polymerization-induced self assembly and sol–gel chemistry. Polymer Chemistry, 2016, 7, 6575-6585.	3.9	21
128	A new method for the determination of the Arrhenius constants for the cure process of unsaturated polyester resins based on a mechanistic model. Thermochimica Acta, 1996, 289, 209-221.	2.7	20
129	Nitroxideâ€mediated radical polymerization in miniemulsion: Bimolecular termination in monomerâ€free model systems. Journal of Polymer Science Part A, 2007, 45, 4995-5004.	2.3	20
130	Chain transfer to solvent in the radical polymerization of <i>N</i> â€isopropylacrylamide. Journal of Polymer Science Part A, 2011, 49, 1856-1864.	2.3	20
131	Size-Tunable Nanoparticle Synthesis by RAFT Polymerization in CO2-Induced Miniemulsions. Macromolecules, 2012, 45, 1803-1810.	4.8	20
132	Polymerization of cubosome and hexosome templates to produce complex microparticle shapes. Journal of Colloid and Interface Science, 2019, 546, 240-250.	9.4	20
133	Structural Complexity of Graphene Oxide: The Kirigami Model. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18255-18263.	8.0	20
134	Synthesis of polymeric nanoparticles containing reduced graphene oxide nanosheets stabilized by poly(ionic liquid) using miniemulsion polymerization. Soft Matter, 2016, 12, 3955-3962.	2.7	19
135	Introduction to polymerisation-induced self assembly. Polymer Chemistry, 2021, 12, 8-11.	3.9	19
136	General Chemistry of Radical Polymerization., 0,, 117-186.		18
137	Mechanism and kinetics of the imidazolidinone nitroxide-mediated free-radical polymerization of styrene. Journal of Polymer Science Part A, 2003, 41, 327-334.	2.3	18
138	Nitroxideâ€Mediated Radical Polymerization of <i>N</i> i>tertâ€Butylacrylamide. Macromolecular Chemistry and Physics, 2008, 209, 2434-2444.	2.2	18
139	Formation of homogeneous nanocomposite films at ambient temperature via miniemulsion polymerization using graphene oxide as surfactant. Journal of Polymer Science Part A, 2017, 55, 2289-2297.	2.3	18
140	A Simple and Versatile Pathway for the Synthesis of Visible Light Photoreactive Nanoparticles. Advanced Functional Materials, 2018, 28, 1800342.	14.9	18
141	RAFT Emulsion Polymerization: MacroRAFT Agent Self-Assembly Investigated Using a Solvachromatic Dye. Biomacromolecules, 2020, 21, 4577-4590.	5.4	18
142	Influence of nitroxide structure on the 2,5- and 2,6-spirodicyclohexyl substituted cyclic nitroxide-mediated free-radical polymerization of styrene. Journal of Polymer Science Part A, 2003, 41, 3892-3900.	2.3	17
143	Mechanism and Kinetics of the Free Radical Ring-Opening Polymerization of Eight-Membered Cyclic Allylic Disulfide Monomers. Macromolecules, 2005, 38, 2143-2147.	4.8	17
144	Network formation in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion: Effect of macroinitiator hydrophilicity. Polymer, 2009, 50, 1632-1636.	3.8	17

#	Article	IF	CITATIONS
145	Effects of the oil–water interface on network formation in nanogel synthesis using nitroxide-mediated radical copolymerization of styrene/divinylbenzene in miniemulsion. Polymer, 2009, 50, 5661-5667.	3.8	17
146	Soft polyhedral particles based on cubic liquid crystalline emulsion droplets. Soft Matter, 2017, 13, 8492-8501.	2.7	17
147	Free volume-based modelling of free radical crosslinking polymerisation of unsaturated polyesters. Polymer, 2002, 43, 2039-2048.	3.8	16
148	Free Radical Bulk Polymerization of Styrene: Simulation of Molecular Weight Distributions to High Conversion Using Experimentally Obtained Rate Coefficients. Macromolecular Theory and Simulations, 2003, 12, 379-385.	1.4	16
149	Chain Transfer and Efficiency of End-Group Introduction in Free Radical Polymerization of Methyl Methacrylate in the Presence of Poly(methyl methacrylate) Macromonomer. Macromolecular Rapid Communications, 2004, 25, 1905-1911.	3.9	16
150	Nitroxide-mediated controlled/living radical copolymerizations with macromonomers. Reactive and Functional Polymers, 2008, 68, 692-700.	4.1	16
151	Synthesis of fluorinated alkoxyamines and alkoxyamine-initiated nitroxide-mediated precipitation polymerizations of styrene in supercritical carbon dioxide. Polymer Chemistry, 2014, 5, 5725-5733.	3.9	16
152	Chain transfer to solvent in the radical polymerization of structurally diverse acrylamide monomers using straight-chain and branched alcohols as solvents. Polymer Chemistry, 2014, 5, 2259.	3.9	16
153	Synthesis of Multicompositional Onionâ€ike Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie - International Edition, 2021, 60, 23281-23288.	13.8	16
154	Determination of the Propagation Rate Coefficient of Vinyl Pivalate Based on EPR Quantification of the Propagating Radical Concentration. Macromolecular Chemistry and Physics, 2007, 208, 2403-2411.	2.2	15
155	Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene. Polymer Chemistry, 2012, 3, 2801.	3.9	15
156	RAFT inverse miniemulsion periphery polymerization in binary solvent mixtures for synthesis of nanocapsules. European Polymer Journal, 2015, 73, 324-334.	5 . 4	15
157	Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules, 2021, 54, 3647-3658.	4.8	15
158	New aspects of unsaturated polyester resin synthesis. Part 2. Reactant sequence distribution and its effect on cure kinetics. Polymer International, 2003, 52, 749-756.	3.1	14
159	Compartmentalization Effects on Bimolecular Termination in Atom Transfer Radical Polymerization in Nanoreactors. Macromolecular Theory and Simulations, 2011, 20, 660-666.	1.4	14
160	Synergistic Effects of Compartmentalization and Nitroxide Exit/Entry in Nitroxide-Mediated Radical Polymerization in Dispersed Systems. ACS Macro Letters, 2012, 1, 692-696.	4.8	14
161	Miniemulsion polymerization based on in situ surfactant formation without high-energy homogenization: effects of organic acid and counter ion. Polymer Journal, 2012, 44, 375-381.	2.7	14
162	Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules, 2022, 55, 1981-1991.	4.8	14

#	Article	IF	Citations
163	Preparation of Polymer Particles Containing Reduced Graphene Oxide Nanosheets Using Ionic Liquid Monomer. Macromolecules, 2016, 49, 1222-1228.	4.8	13
164	Cation-induced coagulation in graphene oxide suspensions. Materials Today Chemistry, 2019, 13, 139-146.	3.5	13
165	Miniemulsion polymerization using carboxylated graphene quantum dots as surfactants: effects of monomer and initiator type. Polymer Chemistry, 2020, 11, 5790-5799.	3.9	13
166	Effects of Storage and Service on Tire Performance: Oil Component Content and Swelling Behavior. Rubber Chemistry and Technology, 2003, 76, 507-516.	1.2	12
167	Preparation of macromonomers by copolymerization of methyl acrylate dimer involving? fragmentation. Journal of Polymer Science Part A, 2004, 42, 597-607.	2.3	12
168	Nitroxideâ€Mediated Radical Polymerization of Butyl Acrylate Using TEMPO: Improvement of Control Exploiting Nanoreactors?. Macromolecular Reaction Engineering, 2010, 4, 663-671.	1.5	12
169	Macromonomer Preparation by Radical Polymerization and Copolymerization of the Unsaturated Tetramer of Methyl Acrylate. Polymer Journal, 2003, 35, 491-500.	2.7	11
170	Addition-fragmentation chain transfer: Molecular weight distributions and retardation in the system methyl methacrylate/methyl \hat{l}_{\pm} -(bromomethyl)acrylate. Journal of Polymer Science Part A, 2004, 42, 2640-2650.	2.3	11
171	Nitroxide-Mediated Radical Polymerization in Nanoreactors: Can Dilution or Increased Nitroxide Concentration Provide Benefits Similar to Compartmentalization?. Australian Journal of Chemistry, 2010, 63, 1195.	0.9	11
172	Microcapsule synthesis via RAFT photopolymerization in vegetable Oil as a green solvent. Journal of Polymer Science Part A, 2018, 56, 831-839.	2.3	11
173	Large Hexosomes from Emulsion Droplets: Particle Shape and Mesostructure Control. Langmuir, 2018, 34, 13662-13671.	3.5	11
174	Reversible Destabilization of UVâ€Responsive Polymer Particles (Latex) using a Photoresponsive Surfactant. Macromolecular Rapid Communications, 2019, 40, e1900355.	3.9	11
175	Miniemulsion photopolymerization in a continuous tubular reactor: particle size control <i>via</i> membrane emulsification. Polymer Chemistry, 2020, 11, 4660-4669.	3.9	11
176	Nitroxide-mediated radical polymerization in nanoreactors: Factors influencing compartmentalization effects on bimolecular termination. Polymer, 2010, 51, 6168-6173.	3.8	10
177	Nitroxideâ€mediated radical polymerization of carbon dioxideâ€expanded methyl methacrylate. Journal of Polymer Science Part A, 2010, 48, 5636-5641.	2.3	10
178	An Innovative Approach to Implementation of Organotellurium-Mediated Radical Polymerization (TERP) in Emulsion Polymerization. Macromolecules, 2015, 48, 4312-4318.	4.8	10
179	Synthesis and characterisation of gradient polymeric nanoparticles. Polymer Chemistry, 2017, 8, 495-499.	3.9	10
180	Nano-dimensional spheres and worms as fillers in polymer nanocomposites: effect of filler morphology. Polymer Chemistry, 2022, 13, 1818-1823.	3.9	10

#	Article	IF	CITATIONS
181	Addition-Fragmentation Chain Transfer Involving Dimers of ±-Methylvinyl Monomers Studied by ESR Spectroscopy: Competition between Fragmentation and Bimolecular Termination. Macromolecular Rapid Communications, 2003, 24, 197-201.	3.9	9
182	Rate enhanced nitroxide-mediated miniemulsion polymerization: effect of nitroxide water solubility. Polymer Chemistry, 2013, 4, 3256.	3.9	9
183	RAFT polymerization in supercritical carbon dioxide based on an induced precipitation approach: Synthesis of 2-ethoxyethyl methacrylate/acrylamide block copolymers. Journal of Polymer Science Part A, 2015, 53, 2351-2356.	2.3	9
184	SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromolecular Rapid Communications, 2015, 36, 1267-1271.	3.9	9
185	Synthesis of polymeric nano-objects of various morphologies based on block copolymer self-assembly using microporous membranes. Reaction Chemistry and Engineering, 2017, 2, 451-457.	3.7	9
186	Confined polymerisation of bis-thyminyl monomers within nanoreactors: towards molecular weight control. Polymer Chemistry, 2020, 11, 4326-4334.	3.9	9
187	<i>In Situ</i> Surfactant Effects on Polymer/Reduced Graphene Oxide Nanocomposite Films: Implications for Coating and Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 12461-12471.	5.0	9
188	Synthesis of low glass transition temperature worms comprising a poly(styrene- <i>stat-n</i> butyl) Tj ETQq0 0 polymerization. Polymer Chemistry, 2022, 13, 1719-1730.	0 rgBT /Ον 3.9	erlock 10 Tf 5 9
189	Synthesis of Highly Stretchable and Electrically Conductive Multiwalled Carbon Nanotube/Polymer Nanocomposite Films. ACS Applied Polymer Materials, 2022, 4, 1867-1877.	4.4	9
190	Reactivities of i‰-Unsaturated Methacrylate Oligomers towardtert-Butoxy Radicals: Investigation of the Effect of Degree of Polymerization and Ester Alkyl Group. Macromolecular Chemistry and Physics, 2003, 204, 1882-1888.	2.2	8
191	New aspects of unsaturated polyester resin synthesis. Part I: modelling and simulation of reactant sequence length distributions in stepwise polymerization. Polymer International, 2003, 52, 104-112.	3.1	8
192	Macromonomer synthesis using ?-(2-methyl-2-phenylpropyl)acrylates as addition-fragmentation chain-transfer agents expelling the cumyl radical. Journal of Polymer Science Part A, 2004, 42, 6021-6030.	2.3	8
193	Instantaneous Copolymer Composition in High Conversion Copolymerization of Acrylonitrile and Methyl Acrylate Assessed by in Situ 13C NMR Measurements of Individual Monomer Reaction Rates. Macromolecules, 2005, 38, 2173-2179.	4.8	8
194	Effects of Laplace Pressure on Propagation and Termination in Aqueous Heterogeneous Free Radical Polymerization. Macromolecular Theory and Simulations, 2006, 15, 40-45.	1.4	8
195	Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization in Miniemulsion Based on In Situ Surfactant Generation. Australian Journal of Chemistry, 2011, 64, 1033.	0.9	8
196	Radical polymerization of CO ₂ â€induced emulsions: A novel route to polymeric nanoparticles. Journal of Polymer Science Part A, 2011, 49, 4307-4311.	2.3	8
197	Tuning phase separation morphology in blend thin films using well-defined linear (multi)block copolymers. Polymer, 2022, 240, 124466.	3.8	8
198	Polymer/Reduced Graphene Oxide/Lignosulfonate Nanocomposite Films as Pseudocapacitor Cathodes. ACS Applied Nano Materials, 2022, 5, 3686-3700.	5.0	8

#	Article	IF	CITATIONS
199	Detailed studies of the initiation step in free radical polymerization of î±-(substituted methyl)acrylates by electron paramagnetic resonance spectroscopy. Polymer, 2003, 44, 2883-2889.	3.8	7
200	Early propagation kinetics in the free radical polymerization of methacrylonitrile investigated by a nitroxide trapping technique. Polymer International, 2003, 52, 1671-1675.	3.1	7
201	Copolymerization of eight-membered ring-opening allylic sulfide lactone and disulfide monomers with methyl methacrylate and styrene. European Polymer Journal, 2006, 42, 2475-2485.	5.4	7
202	Dispersion polymerization of styrene in CO2-expanded ethanol. Polymer, 2013, 54, 6689-6694.	3.8	7
203	Synthesis of microcapsules using inverse emulsion periphery RAFT polymerization via SPG membrane emulsification. Polymer Chemistry, 2016, 7, 7047-7051.	3.9	7
204	Reversible addition-fragmentation chain transfer polymerization of alkyl-2-cyanoacrylates: An assessment of livingness. Journal of Polymer Science Part A, 2017, 55, 1397-1408.	2.3	7
205	Synthesis of polydopamine capsules via SPG membrane emulsion templating: Tuning of capsule size. Journal of Polymer Science Part A, 2017, 55, 365-370.	2.3	7
206	Preparation of Methacrylate Polymer/Reduced Graphene Oxide Nanocomposite Particles Stabilized by Poly(ionic liquid) Block Copolymer via Miniemulsion Polymerization. Macromolecular Rapid Communications, 2020, 41, 2000141.	3.9	7
207	Polymeric nanocomposites based on high aspect ratio polymer fillers: Simultaneous improvement in tensile strength and stretchability. European Polymer Journal, 2022, 169, 111134.	5.4	7
208	Addition-Fragmentation Chain Transfer to Polymer in the Free Radical Ring-Opening Polymerization of an Eight-membered Cyclic Allylic Sulfide Monomer. Macromolecular Theory and Simulations, 2005, 14, 109-116.	1.4	6
209	Use of Fluorescence-Labelled Macroinitiator to Investigate Nucleation Mechanism in Nitroxide-Mediated Crosslinking Polymerization in Aqueous Miniemulsion. Polymer Journal, 2008, 40, 298-299.	2.7	6
210	Rate-Enhanced Nitroxide-Mediated Miniemulsion Polymerization. ACS Macro Letters, 2012, 1, 748-752.	4.8	6
211	RAFT miniemulsion polymerization using dioctyl sodium sulfosuccinate. Journal of Polymer Science Part A, 2013, 51, 2104-2109.	2.3	6
212	Revised insights into templating radical polymerization within nanoreactors. Journal of Polymer Science Part A, 2017, 55, 1590-1600.	2.3	6
213	Interfacial crosslinking of selfâ€assembled triblock copolymer nanoparticles via alkoxysilane hydrolysis and condensation. Journal of Polymer Science Part A, 2019, 57, 1897-1907.	2.3	6
214	Penultimate Unit Effects in Free Radical Copolymerization Studied Using the Individual Propagating Radical Concentrations from Electron Spin Resonance Spectroscopy. Macromolecules, 2002, 35, 8209-8215.	4.8	5
215	Propagation and Termination in Free Radical Polymerization of Styrene to High Conversion Investigated by Electron Spin Resonance Spectroscopy. ACS Symposium Series, 2003, , 72-85.	0.5	5
216	Radical polymerization of miniemulsions induced by compressed gases. RSC Advances, 2016, 6, 50650-50657.	3.6	5

#	Article	IF	CITATIONS
217	Core–shell and gradient morphology polymer particles analyzed by Xâ€ray photoelectron spectroscopy: Effect of monomer feed order. Journal of Polymer Science Part A, 2017, 55, 2513-2526.	2.3	5
218	CO2-responsive polyacrylamide copolymer vesicles with acid-sensitive morpholine moieties and large hydrophobic RAFT end-group. European Polymer Journal, 2017, 97, 129-137.	5.4	5
219	Water and Carbon Dioxide: A Unique Solvent for the Catalytic Polymerization of Ethylene in Miniemulsion. Chemistry - an Asian Journal, 2017, 12, 2057-2061.	3.3	5
220	Enhanced Osteogenic Differentiation of Human Fetal Cartilage Rudiment Cells on Graphene Oxide-PLGA Hybrid Microparticles. Journal of Functional Biomaterials, 2019, 10, 33.	4.4	5
221	Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid and Polymer Science, 2022, 300, 309-317.	2.1	5
222	Polymeric Nanofibers of Various Degrees of Crossâ€Linking as Fillers in Poly(styreneâ€∢i>statâ€na€butyl) Tj Macromolecular Rapid Communications, 2022, 43, e2100879.	ETQq0 0 (3.9) rgBT /Overlo 5
223	RAFT dispersion polymerization induced self-assembly (PISA) of boronic acid-substituted acrylamides. Polymer Chemistry, 2022, 13, 3750-3755.	3.9	5
224	Reaction behavior of sterically hindered ?-(substituted methyl)acrylic esters withtert-butoxy radicals studied by a nitroxide trapping technique. Polymer International, 2003, 52, 1676-1682.	3.1	4
225	Prevention of Rubber Degradation by Use of Microencapsulated Antioxidants. Rubber Chemistry and Technology, 2003, 76, 948-956.	1.2	4
226	Exploiting the homogeneous expansion limit of CO2-expanded media for the synthesis of polymeric nanoparticles. Journal of Supercritical Fluids, 2013, 78, 89-94.	3.2	4
227	A facile route to segmented copolymers by fusing ambient temperature step-growth and RAFT polymerization. Chemical Communications, 2017, 53, 10648-10651.	4.1	4
228	Mechanistic Aspects of Aqueous Heterogeneous Radical Polymerization of Styrene under Compressed CO ₂ . Macromolecular Chemistry and Physics, 2017, 218, 1700128.	2.2	4
229	Estimation of Copolymer/Water Interfacial Tensions Using Pendant Drop Tensiometry. Langmuir, 2018, 34, 6835-6843.	3.5	4
230	Initiation in the free radical (co)polymerization of dialkyl fumarates and dicyclohexyl fumarate/tert-butyl vinyl ether investigated by a nitroxide trapping technique. Polymer International, 2003, 52, 1683-1688.	3.1	3
231	Effect of mixing sequence on the properties of carbon black and silica filled rubber. Plastics, Rubber and Composites, 2003, 32, 291-296.	2.0	3
232	Synthesis of crosslinked polymeric nanocapsules using catanionic vesicle templates stabilized by compressed CO2. Soft Matter, 2015, 11, 8613-8620.	2.7	3
233	Selfâ€assembly of block copolymers with an alkoxysilaneâ€based coreâ€forming block: A comparison of synthetic approaches. Journal of Polymer Science Part A, 2018, 56, 420-429.	2.3	3
234	Multisegmented polymers via step-growth and RAFT miniemulsion polymerization. Polymer Chemistry, $0, , .$	3.9	2

#	Article	IF	CITATIONS
235	Synthesis of Multicompositional Onionâ€like Nanoparticles via RAFT Emulsion Polymerization. Angewandte Chemie, 2021, 133, 23469.	2.0	2
236	Aqueous heterogeneous radical polymerization of styrene under compressed ethane. Journal of Supercritical Fluids, 2018, 142, 45-51.	3.2	1
237	Solvent Effects on the Synthesis of Polymeric Nanoparticles via Block Copolymer Self-Assembly Using Microporous Membranes. Materials Science Forum, 0, 1000, 324-330.	0.3	1
238	Cu(0)-Mediated Controlled/Living Radical Polymerization: A Tool for Precise Multiblock Copolymer Synthesis. ACS Symposium Series, 2014, , 201-212.	0.5	0
239	Special issue dedicated to the memory of Prof Masayoshi Okubo. Colloid and Polymer Science, 2022, 300, 251-253.	2.1	0