Catherine P Adans-Dester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/868839/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-11.	3.7	75
2	Can mHealth Technology Help Mitigate the Effects of the COVID-19 Pandemic?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 243-248.	2.3	69
3	Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digital Medicine, 2020, 3, 121.	10.9	55
4	Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 117.	4.6	41
5	A Paradigm Shift: Rehabilitation Robotics, Cognitive Skills Training, and Function After Stroke. Frontiers in Neurology, 2019, 10, 1088.	2.4	21
6	Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Transactions on Biomedical Engineering, 2021, 68, 1871-1881.	4.2	19
7	Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation. Scientific Reports, 2020, 10, 5104.	3.3	18
8	Evaluation of a lower-extremity robotic exoskeleton for people with knee osteoarthritis. Assistive Technology, 2022, 34, 543-556.	2.0	9
9	Using Wearable Motion Sensors to Estimate Longitudinal Changes in Movement Quality in Stroke and Traumatic Brain Injury Survivors Undergoing Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	8
10	Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disability and Rehabilitation: Assistive Technology, 2023, 18, 475-482.	2.2	8
11	Using a Minimum Set of Wearable Sensors to Assess Quality of Movement in Stroke Survivors. , 2017, , .		6
12	Can kinematic parameters of 3D reach-to-target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation? An exploratory study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 106.	4.6	6
13	Voice Biomarkers of Recovery From Acute Respiratory Illness. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2787-2795.	6.3	5
14	Usability of a new over-ground bodyweight support device (Andago® 2.0) for gait training. Archives of Physical Medicine and Rehabilitation, 2016, 97, e134.	0.9	4
15	Cervical Posture Therapy Using a Head-Based Computer Interface in Children With Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2017, 98, e40.	0.9	4
16	Evaluation of a toolkit for standardizing clinical measures of muscle tone. Physiological Measurement, 2018, 39, 085001.	2.1	4
17	Robotic-assisted Gait Training as Part of the Rehabilitation Program in Persons with Traumatic and Anoxic Brain Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	2
18	Augmenting Back Pain Exercise Therapy Using an Interactive Gaming-Based Intervention in The Home Setting. Archives of Physical Medicine and Rehabilitation, 2016, 97, e133.	0.9	1

CATHERINE P ADANS-DESTER

#	Article	IF	CITATIONS
19	Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors. Archives of Physical Medicine and Rehabilitation, 2017, 98, e65.	0.9	1
20	A Novel End-Effector System to Enable Pro-Supination Movements During Robot-Assisted Upper-Limb Training. Archives of Physical Medicine and Rehabilitation, 2019, 100, e165.	0.9	1
21	Upper Extremity Rehabilitation with the BURT Robotic Arm. Archives of Physical Medicine and Rehabilitation, 2019, 100, e208-e209.	0.9	1
22	Evaluation of a robotic knee brace during the performance of functional tasks in stroke survivors. Gait and Posture, 2015, 42, S20.	1.4	0
23	Retrospective Analysis of Clinical Practice Data of Robot-Assisted Gait Training in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e136.	0.9	0
24	Designing a Wrist-Worn Sensor to Monitor Upper-Limb Use in Stroke Survivors: Stakeholder Focus Group Results. Archives of Physical Medicine and Rehabilitation, 2017, 98, e50.	0.9	0
25	Functional Ambulation in a Patient With Primary Lateral Sclerosis Using a Lower Extremity Robotic Exoskeleton. Archives of Physical Medicine and Rehabilitation, 2017, 98, e69.	0.9	0
26	MOVER: Mobile Virtual Enhancements for Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2017, 98, e83.	0.9	0
27	Robot-Assisted Gait Training in a Rehabilitation Facility: An Analysis of Current Practice. Archives of Physical Medicine and Rehabilitation, 2017, 98, e105.	0.9	0
28	Biomechanical Evaluation of Exoskeleton-Assisted Gait in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2017, 98, e37.	0.9	0