Giorgio Dm Micale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination, 2018, 434, 121-160.	8.2	369
2	Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Applied Thermal Engineering, 2018, 138, 207-216.	6.0	311
3	Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches. Chemical Engineering Science, 1998, 53, 3653-3684.	3.8	259
4	Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes, 2020, 10, 146.	3.0	212
5	Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. Journal of Membrane Science, 2016, 500, 33-45.	8.2	196
6	Development of a Membrane Distillation module for solar energy seawater desalination. Chemical Engineering Research and Design, 2012, 90, 2101-2121.	5.6	163
7	Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up. Journal of Membrane Science, 2015, 492, 9-20.	8.2	160
8	Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. Journal of Membrane Science, 2017, 522, 226-236.	8.2	158
9	Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chemical Engineering Science, 2005, 60, 2303-2316.	3.8	131
10	CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis. Journal of Membrane Science, 2014, 468, 133-148.	8.2	130
11	Analysis of the bubbling behaviour of 2D gas solid fluidized beds. Chemical Engineering Journal, 2008, 140, 398-413.	12.7	129
12	A simulation tool for analysis and design of reverse electrodialysis using concentrated brines. Chemical Engineering Research and Design, 2015, 93, 441-456.	5.6	118
13	Reverse electrodialysis heat engine for sustainable power production. Applied Energy, 2017, 206, 1334-1353.	10.1	115
14	Experiments and CFD Predictions of Solid Particle Distribution in a Vessel Agitated with Four Pitched Blade Turbines. Chemical Engineering Research and Design, 2001, 79, 1005-1010.	5.6	111
15	CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of suspension curves. Chemical Engineering Journal, 2011, 178, 324-341.	12.7	98
16	Determination of limiting current density and current efficiency in electrodialysis units. Desalination, 2018, 445, 138-148.	8.2	98
17	Modelling the Reverse ElectroDialysis process with seawater and concentrated brines. Desalination and Water Treatment, 2012, 49, 404-424.	1.0	97
18	Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code. Desalination, 2013, 311, 103-112.	8.2	95

#	Article	IF	CITATIONS
19	Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study. Journal of Membrane Science, 2016, 497, 300-317.	8.2	94
20	Analysis of the bubbling behaviour of 2D gas solid fluidized beds. Chemical Engineering Journal, 2009, 148, 145-163.	12.7	87
21	A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Computers and Chemical Engineering, 2013, 54, 79-96.	3.8	85
22	Assessment of methodologies and data used to calculate desalination costs. Desalination, 2017, 419, 8-19.	8.2	82
23	CFD Simulation of Particle Distribution in Stirred Vessels. Chemical Engineering Research and Design, 2000, 78, 435-444.	5.6	80
24	CFD Simulation of Particle Suspension Height in Stirred Vessels. Chemical Engineering Research and Design, 2004, 82, 1204-1213.	5.6	79
25	CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension. Chemical Engineering Journal, 2012, 193-194, 234-255.	12.7	78
26	CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution. Chemical Engineering Journal, 2013, 223, 875-890.	12.7	76
27	Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks. Journal of Membrane Science, 2017, 541, 595-610.	8.2	74
28	Exergy analysis of reverse electrodialysis. Energy Conversion and Management, 2018, 164, 588-602.	9.2	70
29	Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment. Chemical Engineering Research and Design, 2009, 87, 587-597.	5.6	66
30	Particle suspension in top-covered unbaffled tanks. Chemical Engineering Science, 2010, 65, 3001-3008.	3.8	65
31	Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion. Energy, 2017, 137, 1293-1307.	8.8	64
32	CFD analysis of the fluid flow behavior in a reverse electrodialysis stack. Desalination and Water Treatment, 2012, 48, 390-403.	1.0	62
33	Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant. Energy Conversion and Management, 2017, 149, 950-965.	9.2	60
34	CFD simulation of a membrane distillation module channel. Desalination and Water Treatment, 2009, 6, 177-183.	1.0	56
35	Prediction of flow fields in a dual-impeller stirred vessel. AICHE Journal, 1999, 45, 445-464.	3.6	55
36	A Thermochromic Liquid Crystals Image Analysis technique to investigate temperature polarization in spacer-filled channels for Membrane Distillation. Journal of Membrane Science, 2013, 447, 260-273.	8.2	55

#	Article	IF	CITATIONS
37	Long-run operation of a reverse electrodialysis system fed with wastewaters. Journal of Environmental Management, 2018, 217, 871-887.	7.8	55
38	CFD modelling of profiled-membrane channels for reverse electrodialysis. Desalination and Water Treatment, 2015, 55, 3404-3423.	1.0	53
39	Assessment of Particle Suspension Conditions in Stirred Vessels by Means of Pressure Gauge Technique. Chemical Engineering Research and Design, 2002, 80, 893-902.	5.6	51
40	Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater. Water Research, 2017, 125, 123-131.	11.3	50
41	CFD simulation of channels for direct and reverse electrodialysis. Desalination and Water Treatment, 2012, 48, 370-389.	1.0	49
42	REAPower: use of desalination brine for power production through reverse electrodialysis. Desalination and Water Treatment, 2015, 53, 3161-3169.	1.0	49
43	Multi-physical modelling of reverse electrodialysis. Desalination, 2017, 423, 52-64.	8.2	49
44	Influence of drag and turbulence modelling on CFD predictions of solid liquid suspensions in stirred vessels. Chemical Engineering Research and Design, 2014, 92, 1045-1063.	5.6	48
45	Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance. Industrial & Engineering Chemistry Research, 2014, 53, 9587-9599.	3.7	48
46	Reverse electrodialysis heat engine with multi-effect distillation: Exergy analysis and perspectives. Energy Conversion and Management, 2019, 194, 140-159.	9.2	48
47	Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime. Industrial & Engineering Chemistry Research, 2013, 52, 14998-15005.	3.7	46
48	Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique. Chemical Engineering Science, 2013, 87, 341-358.	3.8	46
49	Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for Reverse Osmosis. Desalination, 2019, 467, 175-195.	8.2	46
50	Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine. Desalination, 2019, 453, 77-88.	8.2	46
51	A hierarchical model for novel schemes of electrodialysis desalination. Desalination, 2019, 465, 79-93.	8.2	43
52	Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis. Energy Conversion and Management, 2019, 189, 1-13.	9.2	43
53	Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis. Energy, 2019, 166, 674-689.	8.8	42
54	Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment. Energy, 2019, 181, 532-547.	8.8	41

#	Article	IF	CITATIONS
55	Experimental and computational investigation of heat transfer in channels filled by woven spacers. International Journal of Heat and Mass Transfer, 2017, 104, 163-177.	4.8	40
56	CHP (combined heat and power) retrofit for a large MED-TVC (multiple effect distillation along with) Tj ETQq0 0 options under the current legislative EU framework. Energy, 2016, 115, 1548-1559.	0 rgBT /O 8.8	verlock 10 Tf 39
57	Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: Dynamic simulations and control strategy. Energy Conversion and Management, 2020, 216, 112940.	9.2	39
58	Membrane distillation heat transfer enhancement by CFD analysis of internal module geometry. Desalination and Water Treatment, 2011, 25, 195-209.	1.0	38
59	lonic shortcut currents via manifolds in reverse electrodialysis stacks. Desalination, 2020, 485, 114450.	8.2	38
60	CFD prediction of scalar transport in thin channels for reverse electrodialysis. Desalination and Water Treatment, 2015, 55, 3424-3445.	1.0	36
61	Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications. Journal of Membrane Science, 2018, 551, 315-325.	8.2	36
62	Investigation of heat transfer in spacer-filled channels by experiments and direct numerical simulations. International Journal of Heat and Mass Transfer, 2016, 93, 1190-1205.	4.8	35
63	Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions. Applied Energy, 2019, 253, 113489.	10.1	35
64	Integrated production of fresh water, sea salt and magnesium from sea water. Desalination and Water Treatment, 2012, 49, 390-403.	1.0	34
65	On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients. Applied Energy, 2020, 277, 115576.	10.1	34
66	A critical assessment of desalination operations in Sicily. Desalination, 2005, 182, 1-12.	8.2	33
67	On the bubbling dynamics of binary mixtures of powders in 2D gas-solid fluidized beds. Powder Technology, 2012, 231, 21-34.	4.2	32
68	The first operating thermolytic reverse electrodialysis heat engine. Journal of Membrane Science, 2020, 595, 117522.	8.2	32
69	Pressure drop at low Reynolds numbers in woven-spacer-filled channels for membrane processes: CFD prediction and experimental validation. , 0, 61, 170-182.		32
70	Reactive crystallisation process for magnesium recovery from concentrated brines. Desalination and Water Treatment, 2015, 55, 2377-2388.	1.0	31
71	Performance of a RED system with ammonium hydrogen carbonate solutions. Desalination and Water Treatment, 2016, 57, 23007-23018.	1.0	31
72	On the assessment of power consumption and critical impeller speed in vortexing unbaffled stirred tanks. Chemical Engineering Research and Design, 2017, 123, 99-110.	5.6	31

#	Article	IF	CITATIONS
73	Effect of ion exchange capacity and water uptake on hydroxide transport in PSU-TMA membranes: A DFT and molecular dynamics study. Journal of Membrane Science, 2020, 599, 117837.	8.2	31
74	On some issues in the computational modelling of spacer-filled channels for membrane distillation. Desalination, 2017, 411, 101-111.	8.2	30
75	Direct numerical simulations of creeping to early turbulent flow in unbaffled and baffled stirred tanks. Chemical Engineering Science, 2018, 192, 161-175.	3.8	30
76	Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution. Journal of Environmental Management, 2019, 235, 202-212.	7.8	30
77	Towards the implementation of circular economy in the water softening industry: A technical, economic and environmental analysis. Journal of Cleaner Production, 2020, 255, 120291.	9.3	30
78	A comprehensive multi-scale model for bipolar membrane electrodialysis (BMED). Chemical Engineering Journal, 2022, 437, 135317.	12.7	30
79	Experimental analysis of bubble size distributions in 2D gas fluidized beds. Chemical Engineering Science, 2010, 65, 4782-4791.	3.8	27
80	Performance Analysis of a RED-MED Salinity Gradient Heat Engine. Energies, 2018, 11, 3385.	3.1	27
81	A dynamic model for MED-TVC transient operation. Desalination, 2017, 413, 234-257.	8.2	26
82	Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System. Energies, 2019, 12, 3206.	3.1	26
83	Optimization of net power density in Reverse Electrodialysis. Energy, 2019, 181, 576-588.	8.8	26
84	A pilot-plant for the selective recovery of magnesium and calcium from waste brines. Desalination, 2021, 517, 115231.	8.2	26
85	Analysis and simulation of scale-up potentials in reverse electrodialysis. Desalination and Water Treatment, 2015, 55, 3391-3403.	1.0	25
86	Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis. Energies, 2020, 13, 5510.	3.1	25
87	Electrodialysis with asymmetrically profiled membranes: Influence of profiles geometry on desalination performance and limiting current phenomena. Desalination, 2021, 506, 115001.	8.2	25
88	Techno-economic assessment of multi-effect distillation process for the treatment and recycling of ion exchange resin spent brines. Desalination, 2019, 456, 38-52.	8.2	24
89	PLA-based functionally graded laminates for tunable controlled release of carvacrol obtained by combining electrospinning with solvent casting. Reactive and Functional Polymers, 2020, 148, 104490.	4.1	24
90	Water desalination by capacitive electrodialysis: Experiments and modelling. Desalination, 2020, 473, 114150.	8.2	23

#	Article	IF	CITATIONS
91	Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions. Membranes, 2020, 10, 129.	3.0	23
92	CFD Predictions of Sufficient Suspension Conditions in Solid-Liquid Agitated Tanks. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, 427-443.	1.0	21
93	Particle Suspension in Vortexing Unbaffled Stirred Tanks. Industrial & Engineering Chemistry Research, 2016, 55, 7535-7547.	3.7	21
94	An experimental study for the characterization of fluid dynamics and heat transport within the spacer-filled channels of membrane distillation modules. Desalination, 2018, 430, 136-146.	8.2	21
95	Solids Suspension in Three-Phase Stirred Tanks. Chemical Engineering Research and Design, 2000, 78, 319-326.	5.6	20
96	Dense jet modelling applied to the design of dense effluent diffusers. Desalination, 2004, 167, 459-468.	8.2	20
97	Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes. International Journal of Molecular Sciences, 2019, 20, 1840.	4.1	20
98	An integrated approach for the HCl and metals recovery from waste pickling solutions: pilot plant and design operations. Chemical Engineering Research and Design, 2021, 168, 383-396.	5.6	20
99	Seawater Desalination for Freshwater Production. Green Energy and Technology, 2009, , 1-15.	0.6	19
100	Simulation of a regeneration plant for spent pickling solutions via spray roasting. Desalination and Water Treatment, 2016, 57, 23405-23419.	1.0	18
101	Design of a novel membrane-integrated waste acid recovery process from pickling solution. Journal of Cleaner Production, 2019, 236, 117623.	9.3	18
102	Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by a validated process model. Journal of Environmental Management, 2021, 287, 112319.	7.8	18
103	Vibration-based identification of mechanical properties of orthotropic arbitrarily shaped plates: Numerical and experimental assessment. Composites Part B: Engineering, 2018, 150, 212-225.	12.0	17
104	Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine. Applied Energy, 2019, 254, 113699.	10.1	17
105	Techno-economic analysis of integrated processes for the treatment and valorisation of neutral coal mine effluents. Journal of Cleaner Production, 2020, 270, 122472.	9.3	17
106	Reverse electrodialysis. , 2016, , 135-180.		15
107	Eulerian–Lagrangian modeling and computational fluid dynamics simulation of wire mesh demisters in MSF plants. Desalination, 2016, 385, 148-157	8.2	15
108	Potential applications of salinity gradient power-heat engines for recovering low-temperature waste heat in cogeneration plants. Energy Conversion and Management, 2021, 237, 114135.	9.2	15

#	Article	IF	CITATIONS
109	CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine. Chemical Engineering Research and Design, 2021, 171, 36-47.	5.6	15
110	Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: lons membrane transport characterization and modelling. Separation and Purification Technology, 2021, 266, 118215.	7.9	15
111	A brine evaporative cooler/concentrator for autonomous thermal desalination units. Desalination and Water Treatment, 2011, 31, 269-278.	1.0	14
112	New considerations for modelling a MED-TVC plant under dynamic conditions. Desalination, 2019, 452, 94-113.	8.2	14
113	A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines. Membranes, 2020, 10, 303.	3.0	14
114	CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes. International Journal of Heat and Mass Transfer, 2021, 173, 121246.	4.8	14
115	Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions. Powder Technology, 2022, 398, 117106.	4.2	14
116	Investigation of flashing phenomena in MSF chambers. Desalination, 2007, 216, 183-195.	8.2	13
117	Assessment of temperature polarization in membrane distillation channels by liquid crystal thermography. Desalination and Water Treatment, 2015, 55, 2747-2765.	1.0	13
118	Salinity gradient energy. , 2016, , 1-17.		13
119	A simulation tool for ion exchange membrane crystallization of magnesium hydroxide from waste brine. Chemical Engineering Research and Design, 2021, 173, 193-205.	5.6	13
120	Towards sustainable production of minerals and chemicals through seawater brine treatment using Eutectic freeze crystallization and Electrodialysis with bipolar membranes. Journal of Cleaner Production, 2022, 368, 133143.	9.3	13
121	Efficiency increase in thermal desalination plants by matching thermal and solar distillation: theoretical analysis. Desalination, 2005, 183, 127-136.	8.2	12
122	Characterization of pressure retarded osmosis lab-scale systems. Desalination and Water Treatment, 2016, 57, 22994-23006.	1.0	12
123	Exergy analysis of electrodialysis for water desalination: Influence of irreversibility sources. Energy Conversion and Management, 2022, 258, 115314.	9.2	11
124	A 2-D model of electrodialysis stacks including the effects of membrane deformation. Desalination, 2021, 500, 114835.	8.2	10
125	A porous media CFD model for the simulation of hemodialysis in hollow fiber membrane modules. Journal of Membrane Science, 2022, 646, 120219.	8.2	10
126	Mass transfer in ducts with transpiring walls. International Journal of Heat and Mass Transfer, 2019, 132, 1074-1086.	4.8	9

#	Article	IF	CITATIONS
127	Performance comparison between overlapped and woven spacers for membrane distillation. , 0, 69, 178-189.		9
128	Linear stability analysis of gas-fluidized beds for the prediction of incipient bubbling conditions. Chemical Engineering Journal, 2010, 157, 489-500.	12.7	8
129	Coupling sustainable energy with membrane distillation processes for seawater desalination. , 2010, , .		8
130	Eulerian-Eulerian modelling and computational fluid dynamics simulation of wire mesh demisters in MSF plants. Engineering Computations, 2014, 31, 1242-1260.	1.4	8
131	CFD Investigation of Spacer-Filled Channels for Membrane Distillation. Membranes, 2019, 9, 91.	3.0	8
132	A mathematical tool for describing the behaviour of a dense effluent discharge. Desalination and Water Treatment, 2009, 2, 303-318.	1.0	7
133	Arbitrarily shaped plates analysis via Line Element-Less Method (LEM). Thin-Walled Structures, 2018, 133, 235-248.	5.3	7
134	Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer. Computation, 2019, 7, 32.	2.0	7
135	Modelling and Simulation of Gas–liquid Hydrodynamics in a Rectangular Air-lift Reactor. International Journal of Chemical Reactor Engineering, 2013, 11, 667-674.	1.1	6
136	CFD prediction of shell-side flow and mass transfer in regular fiber arrays. International Journal of Heat and Mass Transfer, 2021, 168, 120855.	4.8	6
137	Modeling of Magnetic-Field-Assisted Fluidization: Model Development and CFD Simulation of Magnetically Stabilized Fluidized Beds. KONA Powder and Particle Journal, 2015, 32, 217-226.	1.7	5
138	Salinity gradient engines. , 2016, , 219-256.		5
139	Thermodynamic, Exergy, and Thermoeconomic analysis of Multiple Effect Distillation Processes. , 2018, , 445-489.		5
140	Fluid–Structure Interaction and Flow Redistribution in Membrane-Bounded Channels. Energies, 2019, 12, 4259.	3.1	5
141	On the Reduction of Power Consumption in Vortexing Unbaffled Bioslurry Reactors. Industrial & Engineering Chemistry Research, 2020, 59, 8037-8045.	3.7	5
142	Dynamic response of equivalent orthotropic plate model for stiffened plate: numerical-experimental assessment. Procedia Engineering, 2017, 199, 1423-1428.	1.2	4
143	Unsteadiness and transition to turbulence in woven spacer filled channels for Membrane Distillation. Journal of Physics: Conference Series, 2017, 796, 012003.	0.4	4
144	Electrodialysis for wastewater treatment—Part I: Fundamentals and municipal effluents. , 2020, ,		4

¹⁴⁴ 141-192.

#	Article	IF	CITATIONS
145	Regeneration units for thermolytic salts applications in water & power production: State of the art, experimental and modelling assessment. Desalination, 2021, 504, 114965.	8.2	4
146	A full-atom multiscale modelling for sodium chloride diffusion in anion exchange membranes. Journal of Membrane Science, 2021, 637, 119646.	8.2	4
147	Recovery of zinc from spent pickling solutions by liquid-liquid extraction using TBP. , 0, 157, 110-117.		4
148	Economic Benefits of Waste Pickling Solution Valorization. Membranes, 2022, 12, 114.	3.0	4
149	CFD Modelling of the Demister in the Multi Stage Flash Desalination plant. Computer Aided Chemical Engineering, 2011, , 1618-1622.	0.5	2
150	Reverse Electrodialysis: Applications to Different Case Studies. , 2018, , .		2
151	The REAPower Project. , 2019, , 407-448.		2
152	Electrodialysis for wastewater treatment—Part II: Industrial effluents. , 2020, , 195-241.		2
153	Some Numerical Remarks on a Meshless Approximation Method. , 2016, , .		1
154	Analysis of Rectangular Orthotropic Membranes for Mechanical Properties Identification through Load-Displacement Data. Journal of Engineering Mechanics - ASCE, 2021, 147, 04021028.	2.9	1
155	Reverse electrodialysis heat engine (REDHE). , 2022, , 127-162.		1
156	DYNAMIC MODELING TOOLS FOR SOLAR POWERED DESALINATION PROCESSES DURING TRANSIENT OPERATIONS. , 2007, , 43-67.		0
157	Gas-Fluidization Characteristics of Binary Mixtures of Particles in 2D Geometry. International Journal of Chemical Reactor Engineering, 2012, 10, .	1.1	0
158	Study of bubbling fluidization dynamics via Digital Image Analysis Technique. , 2008, , .		0
159	Temperature Distribution Analysis in Spacer Filled Channels for Membrane Distillation. , 2012, , .		0
160	Modelling Turbulent Inter-Phase Drag in Mechanically Stirred Solid-Liquid Suspensions. , 2012, , .		0
161	Salinity gradient heat engines: An innovative concept for waste heat valorization. , 2022, , 1-32.		0

Salt extraction regeneration technologies. , 2022, , 197-227.

#	Article	IF	CITATIONS
163	Application of computational fluid dynamics technique in membrane distillation processes. , 2022, , 161-208.		ο
164	Application of computational fluid dynamics technique in electrodialysis/reverse electrodialysis processes. , 2022, , 81-160.		0