
Jianrong Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long persistent phosphors—from fundamentals to applications. Chemical Society Reviews, 2016, 45, 2090-2136.	18.7	943
2	Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Scientific Reports, 2013, 3, 1943.	1.6	403
3	Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14, 82-88.	15.6	326
4	Emerging Lowâ€Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Advanced Materials, 2017, 29, 1605886.	11.1	265
5	Transparent glass-ceramics functionalized by dispersed crystals. Progress in Materials Science, 2018, 97, 38-96.	16.0	236
6	Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Progress in Materials Science, 2016, 76, 154-228.	16.0	232
7	Lanthanide-doped NaGdF ₄ core–shell nanoparticles for non-contact self-referencing temperature sensors. Nanoscale, 2014, 6, 5675-5679.	2.8	231
8	Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging. Journal of Materials Chemistry C, 2014, 2, 2657.	2.7	208
9	Ultrafast Manipulation of Selfâ€Assembled Form Birefringence in Glass. Advanced Materials, 2010, 22, 4039-4043.	11.1	199
10	Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 2022, 375, 307-310.	6.0	190
11	Broadband Nearâ€Infrared Garnet Phosphors with Nearâ€Unity Internal Quantum Efficiency. Advanced Optical Materials, 2020, 8, 2000296.	3.6	189
12	400 mW ultrashort cavity low-noise single-frequency Yb^3+-doped phosphate fiber laser. Optics Letters, 2011, 36, 3708.	1.7	185
13	Achieving Thermoâ€Mechanoâ€Optoâ€Responsive Bitemporal Colorful Luminescence via Multiplexing of Dual Lanthanides in Piezoelectric Particles and its Multidimensional Anticounterfeiting. Advanced Materials, 2018, 30, e1804644.	11.1	181
14	Manipulation of Gold Nanoparticles inside Transparent Materials. Angewandte Chemie - International Edition, 2004, 43, 2230-2234.	7.2	177
15	Red Photoluminescence from Bi ³⁺ and the Influence of the Oxygen-Vacancy Perturbation in ScVO ₄ : A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 7515-7522.	1.5	164
16	Broadly tuning Bi ³⁺ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO ₄ :Bi for ultraviolet converted white LEDs. Journal of Materials Chemistry C, 2014, 2, 6068-6076.	2.7	164
17	Orderlyâ€Layered Tetravalent Manganeseâ€Doped Strontium Aluminate <scp><scp>Sr</scp></scp> ₄ <scp><scp>Al</scp>14<scp>OAn Efficient Red Phosphor for Warm White Light Emitting Diodes. Journal of the American Ceramic Society. 2013. 96. 2870-2876.</scp></scp>	> _{25 1.9}	: <scp: 154</scp:
	Ultrasensitive Polarized Up-Conversion of Tm ³⁺ –Yb ³⁺ Doped		

18 ultrasensitive Polarized up-Conversion of Im³⁺ä€"Yb³⁺ Dop
β-NaYF₄ Single Nanorod. Nano Letters, 2013, 13, 2241-2246.

4.5 147

#	Article	IF	CITATIONS
19	Ligandâ€Driven Wavelengthâ€Tunable and Ultraâ€Broadband Infrared Luminescence in Singleâ€Ionâ€Doped Transparent Hybrid Materials. Advanced Functional Materials, 2009, 19, 2081-2088.	7.8	131
20	Highly efficient phosphor-glass composites by pressureless sintering. Nature Communications, 2020, 11, 2805.	5.8	129
21	Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Materials, 2015, 7, e180-e180.	3.8	127
22	Engineering the electronic structure and optical properties of g-C ₃ N ₄ by non-metal ion doping. Journal of Materials Chemistry C, 2016, 4, 6839-6847.	2.7	120
23	A Solutionâ€Processed Ultrafast Optical Switch Based on a Nanostructured Epsilonâ€Nearâ€Zero Medium. Advanced Materials, 2017, 29, 1700754.	11.1	109
24	Universal Near-Infrared and Mid-Infrared Optical Modulation for Ultrafast Pulse Generation Enabled by Colloidal Plasmonic Semiconductor Nanocrystals. ACS Nano, 2016, 10, 9463-9469.	7.3	98
25	An Ultrabroadband Midâ€Infrared Pulsed Optical Switch Employing Solutionâ€Processed Bismuth Oxyselenide. Advanced Materials, 2018, 30, e1801021.	11.1	96
26	3D Foam Strutted Graphene Carbon Nitride with Highly Stable Optoelectronic Properties. Advanced Functional Materials, 2017, 27, 1703711.	7.8	87
27	Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging. Journal of Physical Chemistry Letters, 2013, 4, 402-408.	2.1	85
28	Multistimuliâ€Responsive Display Materials to Encrypt Differentiated Information in Bright and Dark Fields. Advanced Functional Materials, 2019, 29, 1906068.	7.8	79
29	Deepâ€red photoluminescence and long persistent luminescence in double perovstkiteâ€type La ₂ MgGeO ₆ :Mn ⁴⁺ . Journal of the American Ceramic Society, 2018, 101, 1576-1584.	1.9	77
30	MoS ₂ nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser. Nanoscale, 2016, 8, 7704-7710.	2.8	75
31	Self‣imited Nanocrystallizationâ€Mediated Activation of Semiconductor Nanocrystal in an Amorphous Solid. Advanced Functional Materials, 2013, 23, 5436-5443.	7.8	73
32	Broadly Tunable Emission from CaMoO ₄ :Bi Phosphor Based on Locally Modifying the Microenvironment Around Bi ³⁺ Ions. European Journal of Inorganic Chemistry, 2014, 2014, 1373-1380.	1.0	73
33	Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Materials, 2016, 8, e318-e318.	3.8	72
34	Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics, 2021, 3, .	6.2	71
35	Highâ€Power Broadband NIR LEDs Enabled by Highly Efficient Blueâ€ŧoâ€NIR Conversion. Advanced Optical Materials, 2021, 9, 2001660.	3.6	70
36	Up-conversion luminescence in LaF3:Ho3+via two-wavelength excitation for use in solar cells. Journal of Materials Chemistry C, 2013, 1, 8023.	2.7	66

#	Article	IF	CITATIONS
37	Trap Energy Upconversionâ€Like Nearâ€Infrared to Nearâ€Infrared Light Rejuvenateable Persistent Luminescence. Advanced Materials, 2021, 33, e2008722.	11.1	66
38	Efficient spectral conversion from visible to near-infrared in transparent glass ceramics containing Ce ³⁺ –Yb ³⁺ codoped Y ₃ Al ₅ O ₁₂ nanocrystals. Journal of Materials Chemistry C, 2014, 2, 2204-2211.	2.7	59
39	Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses. Applied Physics Letters, 2008, 92, .	1.5	57
40	Reverse Saturable Absorption Induced by Phononâ€Assisted Anti‣tokes Processes. Advanced Materials, 2018, 30, e1801638.	11.1	57
41	Intense multiphoton upconversion of Yb ³⁺ –Tm ³⁺ doped β-NaYF ₄ individual nanocrystals by saturation excitation. Journal of Materials Chemistry C, 2015, 3, 364-369.	2.7	55
42	Ultrafast Nonlinear Optical Response in Plasmonic 2D Molybdenum Oxide Nanosheets for Modeâ€Locked Pulse Generation. Advanced Optical Materials, 2018, 6, 1700948.	3.6	55
43	Controllable synthesis of Zn ₂ GeO ₄ :Eu nanocrystals with multi-color emission for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 5419-5429.	2.7	54
44	Realizing Visible Light Excitation of Tb ³⁺ via Highly Efficient Energy Transfer from Ce ³⁺ for LEDâ€Based Applications. Advanced Optical Materials, 2019, 7, 1801677.	3.6	53
45	Improved Up-Conversion Luminescence from Er ³⁺ :LaF ₃ Nanocrystals Embedded in Oxyfluoride Glass Ceramics via Simultaneous Triwavelength Excitation. Journal of Physical Chemistry C, 2015, 119, 24056-24061.	1.5	52
46	3D printing of glass by additive manufacturing techniques: a review. Frontiers of Optoelectronics, 2021, 14, 263-277.	1.9	52
47	Mechanism of the trivalent lanthanides' persistent luminescence in wide bandgap materials. Light: Science and Applications, 2022, 11, 51.	7.7	52
48	Tailorable Upconversion White Light Emission from Pr ³⁺ Singleâ€Doped Glass Ceramics via Simultaneous Dualâ€Lasers Excitation. Advanced Optical Materials, 2018, 6, 1700787.	3.6	51
49	Unusual Concentration Induced Antithermal Quenching of the Bi2+ Emission from Sr2P2O7:Bi2+. Inorganic Chemistry, 2015, 54, 6028-6034.	1.9	50
50	Understanding Enhanced Upconversion Luminescence in Oxyfluoride Glass-Ceramics Based on Local Structure Characterizations and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 15384-15391.	1.5	50
51	Ultrafast Laser Direct Writing in Glass: Thermal Accumulation Engineering and Applications. Laser and Photonics Reviews, 2021, 15, 2000455.	4.4	50
52	Site-specific reduction of Bi3+ to Bi2+ in bismuth-doped over-stoichiometric barium phosphates. Journal of Materials Chemistry C, 2013, 1, 5303.	2.7	48
53	Efficient Enhancement of Bismuth <scp>NIR</scp> Luminescence by Aluminum and Its Mechanism in Bismuthâ€Doped Germanate Laser Glass. Journal of the American Ceramic Society, 2016, 99, 2071-2076.	1.9	48
54	Optical properties of structurally modified glasses doped with gold ions. Optics Letters, 2004, 29, 370.	1.7	46

#	Article	IF	CITATIONS
55	Ultrafast saturable absorption in TiS ₂ induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale, 2018, 10, 9608-9615.	2.8	46
56	Broadly Tunable Plasmons in Doped Oxide Nanoparticles for Ultrafast and Broadband Mid-Infrared All-Optical Switching. ACS Nano, 2018, 12, 12770-12777.	7.3	46
57	Engineering Tunable Broadband Nearâ€Infrared Emission in Transparent Rareâ€Earth Doped Nanocrystalsâ€Inâ€Glass Composites via a Bottomâ€Up Strategy. Advanced Optical Materials, 2019, 7, 1801482	. 3.6	46
58	Glass rystallized Luminescence Translucent Ceramics toward Highâ€Performance Broadband NIR LEDs. Advanced Science, 2022, 9, e2105713.	5.6	46
59	Fabrication and Characterization of Glass eramic Fiberâ€Containing Cr ³ Â ⁺ Ââ€Doped ZnAl ₂ O ₄ Nanocrystals. Journal of the American Ceramic Society, 2015, 98, 2772-2775.	1.9	44
60	Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding. RSC Advances, 2018, 8, 16344-16348.	1.7	44
61	Photoinduced formation of colloidal Au by a near-infrared femtosecond laser. Journal of Materials Research, 2003, 18, 1710-1714.	1.2	43
62	Femtosecond laser-induced microstructures in glasses and applications in micro-optics. Chemical Record, 2004, 4, 50-58.	2.9	43
63	Ni^2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment. Optics Express, 2015, 23, 28258.	1.7	42
64	Anti-Stokes Fluorescent Probe with Incoherent Excitation. Scientific Reports, 2014, 4, 4059.	1.6	41
65	Broad Mid-Infrared Luminescence in a Metal–Organic Framework Glass. ACS Omega, 2019, 4, 12081-12087.	1.6	41
66	A novel NIR long phosphorescent phosphor:SrSnO ₃ :Bi ²⁺ . RSC Advances, 2015, 5, 101347-101352.	1.7	40
67	Single-molecule photoreaction quantitation through intraparticle-surface energy transfer (i-SET) spectroscopy. Nature Communications, 2020, 11, 4297.	5.8	40
68	Efficient, Stable, and Ultraâ€Broadband Nearâ€Infrared Garnet Phosphors for Miniaturized Optical Applications. Advanced Optical Materials, 2022, 10, .	3.6	40
69	Transition metal ion activated near-infrared luminescent materials. Progress in Materials Science, 2022, 129, 100973.	16.0	39
70	Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. Journal of Applied Physics, 2013, 113, 083503.	1.1	38
71	Lanthanide doped nanoparticles as remote sensors for magnetic fields. Nanoscale, 2014, 6, 11002-11006.	2.8	38
72	Nearâ€Unity and Zeroâ€Thermalâ€Quenching Farâ€Redâ€Emitting Composite Ceramics via Pressureless Glass Crystallization. Laser and Photonics Reviews, 2021, 15, 2100060.	4.4	37

#	Article	IF	CITATIONS
73	Synthesis of NaYF ₄ :Yb–Tm thin film with strong NIR photon up-conversion photoluminescence using electro-deposition method. CrystEngComm, 2014, 16, 4023-4028.	1.3	36
74	3D printing of multicolor luminescent glass. RSC Advances, 2018, 8, 31564-31567.	1.7	36
75	Near-infrared laser driven white light continuum generation: materials, photophysical behaviours and applications. Chemical Society Reviews, 2020, 49, 3461-3483.	18.7	36
76	Hydrothermal synthesis and luminescence behavior of lanthanide-doped GdF/sub 3/ nanoparticles. IEEE Nanotechnology Magazine, 2006, 5, 123-128.	1.1	35
77	Depleted upconversion luminescence in NaYF ₄ :Yb ³⁺ ,Tm ³⁺ nanoparticles via simultaneous two-wavelength excitation. Physical Chemistry Chemical Physics, 2017, 19, 17756-17764.	1.3	35
78	Tunable long persistent luminescence in the second near-infrared window via crystal field control. Scientific Reports, 2017, 7, 12392.	1.6	35
79	Nonlinear-Optical Response in Zeolitic Imidazolate Framework Glass. Inorganic Chemistry, 2020, 59, 8380-8386.	1.9	35
80	Precise frequency shift of NIR luminescence from bismuth-doped Ta ₂ O ₅ –GeO ₂ glass via composition modulation. Journal of Materials Chemistry C, 2014, 2, 7830.	2.7	34
81	Microlaser Output from Rareâ€Earth Ionâ€Doped Nanocrystalâ€inâ€Glass Microcavities. Advanced Optical Materials, 2019, 7, 1900197.	3.6	34
82	Fullâ€Color Chemically Modulated gâ€C ₃ N ₄ for Whiteâ€Lightâ€Emitting Device. Advanced Optical Materials, 2019, 7, 1900775.	3.6	33
83	Universal Preparation of Novel Metal and Semiconductor Nanoparticle–Glass Composites with Excellent Nonlinear Optical Properties. Journal of Physical Chemistry C, 2011, 115, 24598-24604.	1.5	32
84	Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu ³⁺ -doped NaGdF ₄ nanocrystals. Journal of Materials Chemistry C, 2015, 3, 10140-10145.	2.7	32
85	Optical temperature sensing with minimized heating effect using core–shell upconversion nanoparticles. RSC Advances, 2016, 6, 21540-21545.	1.7	32
86	A Universal Photochemical Approach to Ultraâ€&mall, Wellâ€Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 836-841.	3.6	31
87	Refractory Plasmonic Metal Nitride Nanoparticles for Broadband Nearâ€Infrared Optical Switches. Laser and Photonics Reviews, 2019, 13, 1900029.	4.4	31
88	Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores. Journal of Materials Chemistry C, 2019, 7, 5155-5162.	2.7	31
89	Selfâ€Organized Periodic Crystallization in Unconventional Glass Created by an Ultrafast Laser for Optical Attenuation in the Broadband Nearâ€Infrared Region. Advanced Optical Materials, 2019, 7, 1900593.	3.6	30
90	Phaseâ€Separation Engineering of Glass for Drastic Enhancement of Upconversion Luminescence. Advanced Optical Materials, 2019, 7, 1801572.	3.6	30

#	Article	IF	CITATIONS
91	Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Optics Letters, 2020, 45, 3941.	1.7	30
92	Linear and nonlinear optical characteristics of CsPbBr3 perovskite quantum dots-doped borosilicate glasses. Journal of the European Ceramic Society, 2021, 41, 729-734.	2.8	29
93	Ultrabroadband near-infrared luminescence and efficient energy transfer in Bi and Bi/Ho co-doped thin films. Journal of Materials Chemistry C, 2014, 2, 2482.	2.7	28
94	Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Scientific Reports, 2017, 7, 44456.	1.6	28
95	Tuning the optical properties in CsPbBr ₃ quantum dot-doped glass by modulation of its network topology. Journal of Materials Chemistry C, 2021, 9, 6863-6872.	2.7	28
96	Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals. Scientific Reports, 2016, 6, 29871.	1.6	27
97	Dynamically Tuning the Up-conversion Luminescence of Er3+/Yb3+ Co-doped Sodium Niobate Nano-crystals through Magnetic Field. Scientific Reports, 2016, 6, 31327.	1.6	27
98	Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers. Optics Express, 2017, 25, 19691.	1.7	27
99	A yttrium aluminosilicate glass fiber with graded refractive index fabricated by meltâ€inâ€ŧube method. Journal of the American Ceramic Society, 2018, 101, 1616-1622.	1.9	27
100	Coupling Localized Laser Writing and Nonlocal Recrystallization in Perovskite Crystals for Reversible Multidimensional Optical Encryption. Advanced Materials, 2022, 34, e2201413.	11.1	27
101	Defect engineering in lanthanide doped luminescent materials. Coordination Chemistry Reviews, 2021, 448, 214178.	9.5	26
102	Microengineering of Optical Properties of GeO ₂ Glass by Ultrafast Laser Nanostructuring. Advanced Optical Materials, 2017, 5, 1700342.	3.6	25
103	Discovery of non-reversible thermally enhanced upconversion luminescence behavior in rare-earth doped nanoparticles. Journal of Materials Chemistry C, 2019, 7, 4336-4343.	2.7	25
104	Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics. Nanoscale, 2016, 8, 18277-18281.	2.8	24
105	Upconversion Luminescence from Ln ³⁺ (Ho ³⁺ ,Pr ³⁺) lon-Doped BaCl ₂ Particles via NIR Light of Sun Excitation. Journal of Physical Chemistry C, 2018, 122, 9606-9610.	1.5	24
106	Multiâ€component yttrium aluminosilicate (<scp>YAS</scp>) fiber prepared by meltâ€inâ€tube method for stable singleâ€frequency laser. Journal of the American Ceramic Society, 2019, 102, 2551-2557.	1.9	24
107	Photochemically Derived Plasmonic Semiconductor Nanocrystals as an Optical Switch for Ultrafast Photonics. Chemistry of Materials, 2020, 32, 3180-3187.	3.2	24
108	Discovering and Dissecting Mechanically Excited Luminescence of Mn ²⁺ Activators via Matrix Microstructure Evolution. Advanced Functional Materials, 2021, 31, 2100221.	7.8	24

#	Article	IF	CITATIONS
109	Self-organized phase-transition lithography for all-inorganic photonic textures. Light: Science and Applications, 2021, 10, 93.	7.7	24
110	Enhanced upconversion luminescence of transparent Eu^3+-doped glass-ceramics containing nonlinear optical microcrystals. Optics Letters, 2007, 32, 653.	1.7	23
111	Heterogeneous-surface-mediated crystallization control. NPG Asia Materials, 2016, 8, e245-e245.	3.8	23
112	Fast–Slow Red Upconversion Fluorescence Modulation from Ho ³⁺ â€Doped Glass Ceramics upon Twoâ€Wavelength Excitation. Advanced Optical Materials, 2017, 5, 1600554.	3.6	23
113	Ultraâ€Broadband Nearâ€Infrared Luminescence of <scp>Ni²⁺</scp> : <scp>ZnO–Al₂O₃–SiO₂</scp> Nanocomposite Glasses Prepared by Sol–Gel Method. Journal of the American Ceramic Society, 2011, 94, 2902-2905.	1.9	22
114	Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells. Mikrochimica Acta, 2015, 182, 1827-1834.	2.5	22
115	Near-Infrared Emission and Photon Energy Upconversion of Two-Dimensional Copper Silicates. Journal of Physical Chemistry C, 2015, 119, 20571-20577.	1.5	22
116	Flexible Porous SiO ₂ –Bi ₂ WO ₆ Nanofibers Film for Visible‣ight Photocatalytic Water Purification. Journal of the American Ceramic Society, 2015, 98, 957-964.	1.9	22
117	Facile synthesis of two-dimensional WS2 with reverse saturable absorption and nonlinear refraction properties in the PMMA matrix. Journal of Alloys and Compounds, 2016, 684, 224-229.	2.8	22
118	Integrated Strategy for High Luminescence Intensity of Upconversion Nanocrystals. ACS Photonics, 2017, 4, 1930-1936.	3.2	22
119	Understanding differences in Er ³⁺ –Yb ³⁺ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry. RSC Advances, 2018, 8, 12165-12172.	1.7	22
120	Ultrafast and broadband optical nonlinearity in aluminum doped zinc oxide colloidal nanocrystals. Nanoscale, 2019, 11, 13988-13995.	2.8	22
121	Surface crystallized Mnâ€doped glassâ€ceramics for tunable luminescence. Journal of the American Ceramic Society, 2019, 102, 5843-5852.	1.9	22
122	A cross-linking strategy with moderated pre-polymerization of resin for stereolithography. RSC Advances, 2018, 8, 29583-29588.	1.7	21
123	Enhanced 2µm Midâ€Infrared Laser Output from Tm 3+ â€Activated Glass Ceramic Microcavities. Laser and Photonics Reviews, 2020, 14, 1900396.	4.4	21
124	Metal Inorganic–Organic Complex Glass and Fiber for Photonic Applications. Chemistry of Materials, 2022, 34, 2476-2483.	3.2	21
125	A general strategy for controllable synthesis of Ba ₃ (MO ₄) ₂ :Mn ⁵⁺ (M = V, P) nanoparticles. RSC Advances, 2017, 7, 10564-10569.	1.7	20
126	The preparation of Yttrium Aluminosilicate (YAS) Glass Fiber with heavy doping of Tm 3+ from Polycrystalline YAG ceramics. Journal of the American Ceramic Society, 2018, 101, 4627-4633.	1.9	20

Jianrong Qiu

#	Article	IF	CITATIONS
127	Photoluminescence nonuniformity from self-seeding nuclei in CVD-grown monolayer MoSe ₂ . Nanoscale, 2018, 10, 752-757.	2.8	20
128	Fabrication of the (Y ₂ O ₃ :Yb–Er)/Bi ₂ S ₃ composite film for near-infrared photoresponse. Journal of Materials Chemistry A, 2015, 3, 5917-5922.	5.2	19
129	Structure and optical properties of Erâ€doped CaOâ€Al ₂ O ₃ (Ga ₂ O ₃) glasses fabricated by aerodynamic levitation. Journal of the American Ceramic Society, 2017, 100, 2852-2858.	1.9	19
130	Conversion of constant-wave near-infrared laser to continuum white light by Yb-doped oxides. Journal of Materials Chemistry C, 2018, 6, 7520-7526.	2.7	19
131	Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2007, 88, 285-288.	1.1	18
132	Do Eu dopants prefer the precipitated LaF ₃ nanocrystals in glass ceramics?. Physica Status Solidi - Rapid Research Letters, 2012, 6, 487-489.	1.2	18
133	Enhanced broadband near-infrared luminescence in Bi-doped glasses by co-doping with Ag. Journal of Applied Physics, 2013, 113, 183506.	1.1	18
134	Transparent organic/inorganic nanocomposites for tunable full-color upconversion. Journal of Materials Chemistry C, 2015, 3, 9089-9094.	2.7	18
135	Composite film with anisotropically enhanced optical nonlinearity for a pulse-width tunable fiber laser. Journal of Materials Chemistry C, 2018, 6, 1126-1135.	2.7	18
136	Two-/multi-wavelength light excitation effects in optical materials: From fundamentals to applications. Progress in Materials Science, 2019, 105, 100568.	16.0	18
137	Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Progress in Materials Science, 2021, 121, 100814.	16.0	18
138	Enhanced broadband excited upconversion luminescence in Ho-doped glasses by codoping with bismuth. Optics Letters, 2014, 39, 3022.	1.7	17
139	BaCl ₂ :Er ³⁺ —A High Efficient Upconversion Phosphor for Broadband Nearâ€Infrared Photoresponsive Devices. Journal of the American Ceramic Society, 2015, 98, 2508-2513.	1.9	17
140	Bismuthâ€Doped Multicomponent Optical Fiber Fabricated by Meltâ€inâ€Tube Method. Journal of the American Ceramic Society, 2016, 99, 856-859.	1.9	17
141	Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb ³⁺ -Er ³⁺ codoped CaF ₂ nanocrystals. Nanotechnology, 2016, 27, 405203.	1.3	17
142	Ultra-long-delay sustainable and short-term-friction stable mechanoluminescence in Mn2+-activated NaCa2GeO4F with centrosymmetric structure. Chemical Engineering Journal, 2021, 406, 126798.	6.6	17
143	Plasmonic Saturable Absorbers. Advanced Photonics Research, 2021, 2, 2100003.	1.7	17
144	Enhanced CW Lasing and Q‧witched Pulse Generation Enabled by Tm 3+ â€Đoped Glass Ceramic Fibers. Advanced Optical Materials, 2021, 9, 2001774.	3.6	16

#	Article	IF	CITATIONS
145	Boosting Continuousâ€Wave Laserâ€Driven Nonlinear Photothermal White Light Generation by Nanoscale Porosity. Advanced Materials, 2022, 34, e2106368.	11.1	15
146	Self-formation of quasiperiodic void structure in CaF2 induced by femtosecond laser irradiation. Journal of Applied Physics, 2007, 101, 023112.	1.1	14
147	CaF ₂ :Eu films shine novel blue, white or red luminescence though adjustment of the valence state of Eu ions using the electro-deposition method. Journal of Materials Chemistry C, 2017, 5, 12085-12089.	2.7	14
148	Probing Interaction Distance of Surface Quenchers in Lanthanide-Doped Upconversion Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 10278-10283.	1.5	14
149	Heavily Doped Semiconductor Colloidal Nanocrystals as Ultra-Broadband Switches for Near-Infrared and Mid-Infrared Pulse Lasers. ACS Applied Materials & amp; Interfaces, 2019, 11, 40416-40423.	4.0	14
150	A long persistent phosphor based on recombination centers originating from Zn imperfections. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 7-11.	2.0	13
151	(INVITED) Hybrid glass optical fibers-novel fiber materials for optoelectronic application. Optical Materials: X, 2020, 6, 100051.	0.3	13
152	Ultrafast Laser Inducing Continuous Periodic Crystallization in the Glass Activated via Laserâ€Prepared Crystalliteâ€5eeds. Advanced Optical Materials, 2021, 9, 2001962.	3.6	13
153	Amplified Spontaneous Emission from Perovskite Quantum Dots Inside a Transparent Glass. Advanced Optical Materials, 2022, 10, .	3.6	13
154	Wavelength Tailorability of Broadband Nearâ€Infrared Luminescence in Cr ⁴⁺ â€Activated Transparent Glassâ€Ceramics. Journal of the American Ceramic Society, 2014, 97, 3519-3523.	1.9	12
155	Broadband <scp>NIR</scp> photoelectronic performance for sunlightâ€induced photocurrent from (Na <scp>YF</scp> ₄ :Ybâ€Er)/Bi <scp>OI</scp> hybrid films. Journal of the American Ceramic Society, 2017, 100, 697-704.	1.9	12
156	Scalable In-Fiber Manufacture of Functional Composite Particles. ACS Nano, 2018, 12, 11130-11138.	7.3	12
157	Understanding Near Infrared Laser Driven Continuum White Light Emission by Graphene and Its Mixture with an Oxide Phosphor. Advanced Optical Materials, 2019, 7, 1900899.	3.6	12
158	Crystallizationâ€induced valence state change of Mn ²⁺ Â→ÂMn ⁴⁺ in LiNaGe ₄ O ₉ glassâ€ceramics. Journal of the American Ceramic Society, 2020, 103, 3051-3059.	1.9	12
159	Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials. Progress in Materials Science, 2022, 130, 100998.	16.0	12
160	Synthesis and phase transformation of NaGdF ₄ :Yb–Er thin films using electro-deposition method at moderate temperatures. CrystEngComm, 2018, 20, 6919-6924.	1.3	11
161	<i>In vivo</i> clearable inorganic nanophotonic materials: designs, materials and applications. Nanoscale, 2019, 11, 12742-12754.	2.8	11
162	Manipulating Nonlinear Optical Response via Domain Control in Nanocrystalâ€inâ€Glass Composites. Advanced Materials, 2021, 33, e2006482.	11.1	11

#	Article	IF	CITATIONS
163	Comment on "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses― [Appl. Phys. Lett. 82, 4035 (2003)]. Applied Physics Letters, 2005, 87, 066103.	1.5	10
164	Controllable Synthesis of Monodisperse Er3+-Doped Lanthanide Oxyfluorides Nanocrystals with Intense Mid-Infrared Emission. Scientific Reports, 2016, 6, 35348.	1.6	10
165	Effect of ligand field symmetry on upconversion luminescence in heatâ€treated LaBGeO 5 :Yb 3+ , Er 3+ glass. Journal of the American Ceramic Society, 2018, 101, 4387-4396.	1.9	10
166	Controllable modulation of coordination environments of Mn2+ in glasses and glass-ceramics for tunable luminescence. Journal of the European Ceramic Society, 2020, 40, 1658-1664.	2.8	10
167	Paradoxical combination of saturable absorption and reverse-saturable absorption in plasmon semiconductor nanocrystals. Nanoscale Advances, 2020, 2, 1676-1684.	2.2	10
168	Preparation and characterization of flexible and thermally stable CuO nanocrystal-decorated SiO2 nanofibers. Journal of Sol-Gel Science and Technology, 2015, 76, 492-500.	1.1	9
169	A comparative investigation on upconversion luminescence in glass–ceramics containing LaF3 and CaF2 nanocrystals. Journal of Materials Science: Materials in Electronics, 2018, 29, 8701-8709.	1.1	9
170	Self-Confined Precipitation of Ultrasmall Plasmonic Cu _{2–<i>x</i>} Se Particles in Transparent Solid Medium. Journal of Physical Chemistry C, 2019, 123, 9394-9399.	1.5	8
171	Photoreduction of Ag+ in aluminoborate glasses induced by irradiation of a femtosecond laser. Journal of Materials Research, 2005, 20, 644-648.	1.2	7
172	Structural variation and near infrared luminescence in Mn5+-doped M2SiO4 (M = Ba, Sr, ca) phosphors by cation substitution. Journal of Materials Science: Materials in Electronics, 2018, 29, 6419-6427.	1.1	7
173	Effect of SiO2 on optical properties of bismuth-doped B2O3–GeO2–SiO2 glasses. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	7
174	Enhanced Capture of Broadband Solarâ€Blind UV Light via Introducing Alkaliâ€Metal Ions (Li + , Na + , and) Tj ETQ	q0 0 0 rgl	37, /Overlock
175	Laser-controlled precipitation of gold nanoparticles in silicate glasses. Journal of Materials Research, 2003, 18, 2097-2100.	1.2	6
176	Long-lasting phosphorescence and photostimulated long-lasting phosphorescence in Mn ²⁺ -doped alumino-phosphofluoride glasses irradiated by a femtosecond laser. Journal of Materials Research, 2003, 18, 616-619.	1.2	6
177	Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration. Ceramics International, 2019, 45, 19182-19188.	2.3	6
178	Eu3+-doped AlO(OH) as a spectral converter for broadband solar-blind UV photodetection. Solar Energy Materials and Solar Cells, 2020, 205, 110242.	3.0	6
179	Microstructure and Faraday effect of Tb ₂ O ₃ 3â€Al ₂ O ₃ â€SiO ₂ 2O <sub glasses for fiberâ€based magnetoâ€optical applications. Journal of the American Ceramic Society, 2022, 105, 1198-1209.</sub 	>3 1.9	6
180	Photon Manipulation of Two-Dimensional Plasmons in Metal Oxide Nanosheets for Surface-Enhanced Spectroscopy and Ultrafast Optical Switching. Chemistry of Materials, 2022, 34, 2804-2812.	3.2	6

#	Article	IF	CITATIONS
181	Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Advances, 2015, 5, 84276-84279.	1.7	5
182	Luminescent properties of doped amorphous and polycrystalline Y ₃ Al ₅ O ₁₂ â€Al ₂ O ₃ . Journal of the American Ceramic Society, 2021, 104, 3139-3148.	1.9	5
183	<i>In situ</i> dopant-induced nano-crystallization of rare-earth-fluoride crystals in phase-separated networks for highly-efficient photoemission and photonic devices. Journal of Materials Chemistry C, 0, , .	2.7	5
184	Broadband near-IR photoluminescence in Ni2+ doped gallium silicate glass–ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 17715-17724.	1.1	4
185	Enhanced up-conversion luminescence in transparent glass-ceramic containing KEr ₃ F ₁₀ :Er ³⁺ nanocrystals and its application in temperature detection. RSC Advances, 2019, 9, 10999-11004.	1.7	4
186	Broadband Nonlinear Optical Absorption Induced by Bandgap Renormalization in CVD-Grown Monolayer MoSe ₂ . ACS Applied Materials & Interfaces, 2022, 14, 8274-8281.	4.0	4
187	Intense continuousâ€wave laser and modeâ€locked pulse operation from Yb ³⁺ â€doped oxyfluoride glass–ceramic fibers. Journal of the American Ceramic Society, 2022, 105, 5203-5212.	1.9	4
188	Space-Selective Precipitation of Au Nanoparticles Inside Silica Gel. Journal of Sol-Gel Science and Technology, 2006, 37, 5-8.	1.1	3
189	Multimaterial Fiber Detector for Realâ€Time and Remote Xâ€Ray Monitoring. Advanced Materials Technologies, 2020, 5, 2000302.	3.0	3
190	Synthesis methods. , 2021, , 31-67.		3
191	Enhancement and Inversion of Absorptive Nonlinearity Induced by Topochemically Controlled Insulator-to-Metal Transition. Journal of Physical Chemistry C, 2021, 125, 27023-27031.	1.5	3
192	Valence state change of europium in barium aluminates glass ceramics fabricated by containerless processing. Materials Letters, 2018, 225, 97-100.	1.3	2
193	Pulsed Lasers: An Ultrabroadband Mid-Infrared Pulsed Optical Switch Employing Solution-Processed Bismuth Oxyselenide (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870233.	11.1	2
194	Persistent phosphors. , 2021, , 127-215.		2
195	Nd3+-doped glass-ceramic fiber fabricated by drawing precursor ceramic and successive heat treatment. Ceramics International, 2022, 48, 21671-21675.	2.3	2
196	Glass: Topological Engineering of Glass for Modulating Chemical State of Dopants (Adv. Mater.) Tj ETQq0 0 0 rgI	3T /Overlo 11.1	ock 10 Tf 50 1
197	Coherent modulation of two-photon up-conversion from colloidal quantum dots by femtosecond laser. RSC Advances, 2015, 5, 80998-81002.	1.7	1

198	Duelâ€Responsive Hybrid Nanoparticle with Energy Transfer Modulated Near Infrared Emission. ChemNanoMat, 2020, 6, 285-291.	1.5	1
-----	---	-----	---

#	Article	IF	CITATIONS
199	Internal modification in glass induced with a femtosecond laser. , 2005, , .		0
200	The formation mechanism of void array in glass induced by femtosecond laser pulses. , 2007, , .		0
201	Functional Microstructures in Glass Induced by a Femtosecond Laser. , 2006, , 405-443.		Ο