## **Dongqing Zhang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8688099/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF               | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 1  | Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution - A review. Science of the Total Environment, 2019, 694, 133606.                                                                                 | 3.9              | 239                  |
| 2  | Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed<br>by Single-Particle Inductively Coupled Plasma–Mass Spectrometry Analysis. Environmental Science<br>& Technology, 2015, 49, 3007-3014. | 4.6              | 194                  |
| 3  | The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L<br>Environmental Pollution, 2016, 219, 28-36.                                                                                                    | 3.7              | 171                  |
| 4  | Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229, 132-138.                                                       | 3.7              | 134                  |
| 5  | Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, 2017, 4, 1086-1094.                                                   | 2.2              | 101                  |
| 6  | Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review. Environmental Pollution, 2019, 247, 266-276.                                                                                         | 3.7              | 92                   |
| 7  | Mutual effects and <i>in planta</i> accumulation of co-existing cerium oxide nanoparticles and<br>cadmium in hydroponically grown soybean ( <i>Glycine max</i> (L) Merr.). Environmental Science:<br>Nano, 2018, 5, 150-157.               | 2.2              | 91                   |
| 8  | Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish<br>( <i>Raphanus sativus</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 382-390.                                           | 2.4              | 90                   |
| 9  | Uptake, Accumulation, and in Planta Distribution of Coexisting Cerium Oxide Nanoparticles and Cadmium in <i>Glycine max</i> (L.) Merr Environmental Science & amp; Technology, 2017, 51, 12815-12824.                                      | 4.6              | 88                   |
| 10 | Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 5157-5167.                                                      | 1.9              | 83                   |
| 11 | Sonochemical degradation of poly- and perfluoroalkyl substances – A review. Ultrasonics<br>Sonochemistry, 2020, 69, 105245.                                                                                                                | 3.8              | 82                   |
| 12 | The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environmental Science and Pollution Research, 2018, 25, 930-939.                                  | 2.7              | 80                   |
| 13 | Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and<br>Biochemical Responses in <i>Brassica rapa</i> . Environmental Science & Technology, 2016, 50,<br>6793-6802.                                     | 4.6              | 75                   |
| 14 | Exposure of Juncus effusus to seven perfluoroalkyl acids: Uptake, accumulation and phytotoxicity.<br>Chemosphere, 2019, 233, 300-308.                                                                                                      | 4.2              | 73                   |
| 15 | Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus) Tj ETQq1 2017, 5, 572-577.                                                                                                             | 1 0.78431<br>3.3 | 4 rgBT /Overlo<br>60 |
| 16 | Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar.<br>Environmental Technology (United Kingdom), 2021, 42, 1798-1809.                                                                           | 1.2              | 57                   |
| 17 | Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community. Science of the Total Environment, 2019, 697, 134146.                                                              | 3.9              | 53                   |
| 18 | Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environmental Pollution, 2019, 246, 381-389.                                              | 3.7              | 52                   |

DONGQING ZHANG

| #  | Article                                                                                                                                                                                                                                          | IF              | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 19 | Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Physiology and<br>Biochemistry, 2017, 110, 185-193.                                                                                                     | 2.8             | 44            |
| 20 | Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Science of the Total Environment, 2021, 771, 144805.                                                                                                               | 3.9             | 38            |
| 21 | Removal of eight perfluoroalkyl acids from aqueous solutions by aeration and duckweed. Science of the Total Environment, 2020, 724, 138357.                                                                                                      | 3.9             | 32            |
| 22 | Destruction of Perfluoroalkyl Acids Accumulated in <i>Typha latifolia</i> through Hydrothermal<br>Liquefaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9257-9262.                                                                   | 3.2             | 31            |
| 23 | Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine<br>Learning. Environmental Science & Technology, 2021, 55, 7491-7500.                                                                               | 4.6             | 29            |
| 24 | Effects of hydrothermal treatments on destruction of per- and polyfluoroalkyl substances in sewage sludge. Environmental Pollution, 2021, 285, 117276.                                                                                           | 3.7             | 26            |
| 25 | Environmental factors affecting degradation of perfluorooctanoic acid (PFOA) by In2O3 nanoparticles. Journal of Environmental Sciences, 2020, 93, 48-56.                                                                                         | 3.2             | 25            |
| 26 | Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels<br>of Inorganic Phosphate and MgATP <sup>2–</sup> in <i>Arabidopsis thaliana</i> . Environmental<br>Science & Technology, 2018, 52, 4385-4392. | 4.6             | 24            |
| 27 | Effects of Aging on the Fate and Bioavailability of Cerium Oxide Nanoparticles to Radish (Raphanus) Tj ETQq1 1                                                                                                                                   | 0.784314<br>3.2 | rgBT /Overloc |
| 28 | Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpact, 2020, 20, 100264.                                                                                                     | 2.4             | 20            |
| 29 | Impact of Nanoparticle Surface Properties on the Attachment of Cerium Oxide Nanoparticles to Sand<br>and Kaolin. Journal of Environmental Quality, 2018, 47, 129-138.                                                                            | 1.0             | 17            |
| 30 | Alleviating nutrient imbalance of low carbon-to-nitrogen ratio food waste in anaerobic digestion by controlling the inoculum-to-substrate ratio. Bioresource Technology, 2022, 346, 126342.                                                      | 4.8             | 17            |
| 31 | Effects of geochemical conditions, surface modification, and arsenic (As) loadings on As release from<br>As-loaded nano zero-valent iron in simulated groundwater. Environmental Science: Water Research<br>and Technology, 2019, 5, 28-38.      | 1.2             | 16            |
| 32 | Ineffectiveness of ultrasound at low frequency for treating per- and polyfluoroalkyl substances in sewage sludge. Chemosphere, 2022, 286, 131748.                                                                                                | 4.2             | 16            |
| 33 | Performance of different sorbents toward stabilizing per- and polyfluoroalkyl substances (PFAS) in soil. Environmental Advances, 2022, 8, 100217.                                                                                                | 2.2             | 16            |
| 34 | Bacterial community in a freshwater pond responding to the presence of perfluorooctanoic acid<br>(PFOA). Environmental Technology (United Kingdom), 2020, 41, 3646-3656.                                                                         | 1.2             | 13            |
| 35 | Fluoroalkylether compounds affect microbial community structures and abundance of nitrogen cycle-related genes in soil-microbe-plant systems. Ecotoxicology and Environmental Safety, 2021, 228, 113033.                                         | 2.9             | 13            |
| 36 | Initial Sterilization of Soil Affected Interactions of Cerium Oxide Nanoparticles and Soybean<br>Seedlings ( <i>Glycine max</i> (L.) Merr.) in a Greenhouse Study. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 10307-10314.           | 3.2             | 12            |

DONGQING ZHANG

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Uptake of individual and mixed per- and polyfluoroalkyl substances (PFAS) by soybean and their effects<br>on functional genes related to nitrification, denitrification, and nitrogen fixation. Science of the<br>Total Environment, 2022, 838, 156640. | 3.9 | 12        |
| 38 | Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. Environmental Pollution, 2022, 308, 119724.                                                            | 3.7 | 11        |
| 39 | Degradation by hydrothermal liquefaction of fluoroalkylether compounds accumulated in cattails<br>(Typha latifolia). Journal of Environmental Chemical Engineering, 2021, 9, 105363.                                                                    | 3.3 | 9         |
| 40 | Photodegradation of F–53B in aqueous solutions through an UV/lodide system. Chemosphere, 2022,<br>292, 133436.                                                                                                                                          | 4.2 | 9         |
| 41 | Hydrothermal liquefaction of sewage sludge – effect of four reagents on relevant parameters<br>related to biocrude and PFAS. Journal of Environmental Chemical Engineering, 2022, 10, 107092.                                                           | 3.3 | 8         |
| 42 | Uptake and toxicity studies of magnetic TiO2-Based nanophotocatalyst in Arabidopsis thaliana.<br>Chemosphere, 2019, 224, 658-667.                                                                                                                       | 4.2 | 5         |
| 43 | Interactions between Lemna minor (common duckweed) and PFAS intermediates:<br>Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA). Chemosphere, 2021,<br>276, 130165.                                                         | 4.2 | 5         |
| 44 | Stabilization of per- and polyfluoroalkyl substances (PFAS) in sewage sludge using different sorbents.<br>Journal of Hazardous Materials Advances, 2022, 6, 100089.                                                                                     | 1.2 | 5         |
| 45 | Optimization of Thermal Pretreatment of Food Waste for Maximal Solubilization. Journal of Environmental Engineering, ASCE, 2021, 147, .                                                                                                                 | 0.7 | 4         |
| 46 | Editorial: Occurrence, Fate, and Treatment of Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment and Engineered Systems. Frontiers in Environmental Science, 2022, 10, .                                                                  | 1.5 | 0         |