SÅ,awomir Filipek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8687739/publications.pdf

Version: 2024-02-01

57631 58464 7,411 135 44 82 citations h-index g-index papers 140 140 140 7624 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The EcCLC antiporter embedded in lipidic liquid crystalline films – molecular dynamics simulations and electrochemical methods. Physical Chemistry Chemical Physics, 2022, 24, 3066-3077.	1.3	2
2	SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Scientific Reports, 2022, 12, 103.	1.6	48
3	Flavonoid quercetin abolish paxilline inhibition of the mitochondrial BKCa channel. Mitochondrion, 2022, 65, 23-32.	1.6	6
4	Molecular Modeling of Histamine Receptors—Recent Advances in Drug Discovery. Molecules, 2021, 26, 1778.	1.7	12
5	Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol—A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules, 2021, 26, 2456.	1.7	19
6	The Role of Cholesterol in Amyloidogenic Substrate Binding to the \hat{l}^3 -Secretase Complex. Biomolecules, 2021, 11, 935.	1.8	5
7	GPCRsignal: webserver for analysis of the interface between G-protein–coupled receptors and their effector proteins by dynamics and mutations. Nucleic Acids Research, 2021, 49, W247-W256.	6.5	2
8	Unexpected Reaction Products of Uracil and Its Methyl Derivatives with Acetic Anhydride and Methylene Chloride. Journal of Organic Chemistry, 2021, 86, 14321-14332.	1.7	0
9	Discovery of thiazolidin-4-one analogue as selective GSK-3β inhibitor through structure based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128375.	1.0	2
10	Homology Modeling Using GPCRM Web Service. Methods in Molecular Biology, 2021, 2268, 305-321.	0.4	1
11	Structural diversity in ligand recognition by GPCRs. , 2020, , 43-63.		1
12	GPCRmd uncovers the dynamics of the 3D-GPCRome. Nature Methods, 2020, 17, 777-787.	9.0	90
13	Enigmatic Histamine Receptor H4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life, 2020, 10, 50.	1.1	19
14	The Hydrophobic Ligands Entry and Exit from the GPCR Binding Site-SMD and SuMD Simulations. Molecules, 2020, 25, 1930.	1.7	6
15	Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.	1.6	64
16	Differentiating between Inactive and Active States of Rhodopsin by Atomic Force Microscopy in Native Membranes. Analytical Chemistry, 2019, 91, 7226-7235.	3.2	25
17	Molecular switches in GPCRs. Current Opinion in Structural Biology, 2019, 55, 114-120.	2.6	79
18	Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Communications Biology, 2019, 2, 141.	2.0	25

#	Article	IF	CITATIONS
19	Modeling of Membrane Proteins. Springer Series on Bio- and Neurosystems, 2019, , 371-451.	0.2	5
20	Interaction of the middle domains stabilizes $Hsp90\hat{l}_{\pm}$ dimer in a closed conformation with high affinity for p23. Biological Chemistry, 2018, 399, 337-345.	1.2	3
21	Aquaporin–graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination. Interface Focus, 2018, 8, 20170066.	1.5	31
22	Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. Methods in Molecular Biology, 2018, 1705, 265-296.	0.4	2
23	GPCRM: a homology modeling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Research, 2018, 46, W387-W395.	6.5	39
24	Exploring a new ligand binding site of G protein-coupled receptors. Chemical Science, 2018, 9, 6480-6489.	3.7	37
25	Application of a Membrane Protein Structure Prediction Web Service GPCRM to a Gastric Inhibitory Polypeptide Receptor Model. Lecture Notes in Computer Science, 2017, , 151-162.	1.0	0
26	Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors. European Journal of Medicinal Chemistry, 2017, 136, 543-547.	2.6	9
27	Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2608-E2615.	3.3	28
28	Crystal structures of nematode (parasitic T. spiralis and free living C. elegans), compared to mammalian, thymidylate synthases (TS). Molecular docking and molecular dynamics simulations in search for nematode-specific inhibitors of TS. Journal of Molecular Graphics and Modelling, 2017, 77, 33-50.	1.3	2
29	A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects \hat{l}_{\pm} B-crystallin structure. BBA Clinical, 2017, 7, 1-7.	4.1	36
30	Computational approach for the assessment of inhibitory potency against beta-amyloid aggregation. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 212-216.	1.0	16
31	Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT _{1A} Receptor. Angewandte Chemie - International Edition, 2016, 55, 8661-8665.	7.2	27
32	Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarinâ€Based Derivatives. ChemMedChem, 2016, 11, 1296-1308.	1.6	20
33	Mechanistic Studies on the Stereoselectivity of the Serotonin 5â€HT _{1A} Receptor. Angewandte Chemie, 2016, 128, 8803-8807.	1.6	2
34	Hydrophobic Ligand Entry and Exit Pathways of the CB1 Cannabinoid Receptor. Journal of Chemical Information and Modeling, 2016, 56, 2457-2466.	2.5	22
35	PyMOL and Inkscape Bridge the Data and the Data Visualization. Structure, 2016, 24, 2041-2042.	1.6	155
36	A Gating Mechanism of the Serotonin 5-HT 3 Receptor. Structure, 2016, 24, 816-825.	1.6	43

#	Article	IF	Citations
37	Polyamine Conjugation as a Promising Strategy To Target Amyloid Aggregation in the Framework of Alzheimer's Disease. ACS Medicinal Chemistry Letters, 2016, 7, 1145-1150.	1.3	16
38	The Molecular Mechanism of P2Y ₁ Receptor Activation. Angewandte Chemie, 2016, 128, 10487-10491.	1.6	2
39	The Molecular Mechanism of P2Y ₁ Receptor Activation. Angewandte Chemie - International Edition, 2016, 55, 10331-10335.	7.2	49
40	The Principles of Ligand Specificity on beta-2-adrenergic receptor. Scientific Reports, 2016, 6, 34736.	1.6	44
41	Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochemical Journal, 2016, 473, 3819-3836.	1.7	48
42	A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2016, 56, 630-641.	2.5	14
43	Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin. PLoS ONE, 2016, 11, e0162952.	1.1	2
44	W246 ^{6.48} Opens a Gate for a Continuous Intrinsic Water Pathway during Activation of the Adenosineâ€A _{2A} Receptor. Angewandte Chemie - International Edition, 2015, 54, 556-559.	7.2	64
45	Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Scientific Reports, 2015, 5, 14948.	1.6	26
46	The Mechanism of Ligandâ€Induced Activation or Inhibition of μ―and κâ€Opioid Receptors. Angewandte Chemie - International Edition, 2015, 54, 7560-7563.	7.2	47
47	Lyotropic Cubic Phases for Drug Delivery: Diffusion and Sustained Release from the Mesophase Evaluated by Electrochemical Methods. Langmuir, 2015, 31, 12753-12761.	1.6	62
48	Amyloidogenic Properties of Short α- <scp>l</scp> -Glutamic Acid Oligomers. Langmuir, 2015, 31, 10500-10507.	1.6	21
49	Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Advances, 2015, 5, 13570-13578.	1.7	19
50	Nano-Encapsulation of Glucose Oxidase Dimer by Graphene. Materials Research Society Symposia Proceedings, 2015, 1725, 1.	0.1	1
51	Non-peptide ligand binding to the formyl peptide receptor FPR2â€"A comparison to peptide ligand binding modes. Bioorganic and Medicinal Chemistry, 2015, 23, 4072-4081.	1.4	19
52	Graphene–protein field effect biosensors: glucose sensing. Materials Today, 2015, 18, 513-522.	8.3	134
53	Study of early stages of amyloid \hat{A}^2 13-23 formation using molecular dynamics simulation in implicit environments. Computational Biology and Chemistry, 2015, 56, 13-18.	1.1	7
54	Two Desmin Gene Mutations Associated with Myofibrillar Myopathies in Polish Families. PLoS ONE, 2014, 9, e115470.	1.1	12

#	Article	IF	Citations
55	Application of Computational Methods for the Design of BACE-1 Inhibitors: Validation of in Silico Modelling. International Journal of Molecular Sciences, 2014, 15, 5128-5139.	1.8	17
56	The effect of triple glutamic mutations E9Q/E194Q/E204Q on the structural stability of bacteriorhodopsin. FEBS Journal, 2014, 281, 1181-1195.	2.2	4
57	Modeling of Membrane Proteins. Springer Series in Bio-/neuroinformatics, 2014, , 357-431.	0.1	0
58	Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential anti-tumor agents. Bioorganic and Medicinal Chemistry, 2014, 22, 1008-1015.	1.4	51
59	High-Level Cell-Free Production of Membrane Proteins with Nanodiscs. Methods in Molecular Biology, 2014, 1118, 109-130.	0.4	16
60	Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.	5.8	197
61	Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Molecular Membrane Biology, 2013, 30, 75-89.	2.0	54
62	The Role of Water and Sodium Ions in the Activation of the μâ€Opioid Receptor. Angewandte Chemie - International Edition, 2013, 52, 10112-10115.	7.2	104
63	Acetylation of Lysine 92 Improves the Chaperone and Anti-apoptotic Activities of Human αB-Crystallin. Biochemistry, 2013, 52, 8126-8138.	1.2	28
64	Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication, 2013, 5, 035009.	3.7	17
65	Low-temperature molecular dynamics simulations of horse heart cytochrome c and comparison with inelastic neutron scattering data. European Biophysics Journal, 2013, 42, 291-300.	1.2	7
66	Lipid Receptor S1P1 Activation Scheme Concluded from Microsecond All-Atom Molecular Dynamics Simulations. PLoS Computational Biology, 2013, 9, e1003261.	1.5	31
67	Towards Improved Quality of GPCR Models by Usage of Multiple Templates and Profile-Profile Comparison. PLoS ONE, 2013, 8, e56742.	1.1	49
68	A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene. PLoS ONE, 2013, 8, e61074.	1.1	30
69	Editorial [Hot Topic: Recent Achievements on G-Protein Coupled Receptors (Guest Editor: Slawomir) Tj ETQq1 1	0.784314 1.2	rgBT /Overlo
70	Recognition of the letâ€₹g miRNA precursor by human Lin28B. FEBS Letters, 2012, 586, 3986-3990.	1.3	19
71	Amyloid β-Peptide 25–35 Self-Assembly and Its Inhibition: A Model Undecapeptide System to Gain Atomistic and Secondary Structure Details of the Alzheimer's Disease Process and Treatment. ACS Chemical Neuroscience, 2012, 3, 952-962.	1.7	85
72	Cell-free expression of human glucosamine 6-phosphate N-acetyltransferase (HsGNA1) for inhibitor screening. Protein Expression and Purification, 2012, 86, 120-126.	0.6	6

#	Article	IF	CITATIONS
73	Understanding the Inhibitory Effect of Highly Potent and Selective Archazolides Binding to the Vacuolar ATPase. Journal of Chemical Information and Modeling, 2012, 52, 2265-2272.	2.5	18
74	Protein–Carbon Nanotube Sensors. Methods in Enzymology, 2012, 509, 165-194.	0.4	15
75	The Role of Water in Activation Mechanism of Human N-Formyl Peptide Receptor 1 (FPR1) Based on Molecular Dynamics Simulations. PLoS ONE, 2012, 7, e47114.	1.1	22
76	Ubiquitous Amyloids. Applied Biochemistry and Biotechnology, 2012, 166, 1626-1643.	1.4	51
77	G protein-coupled receptorsrecent advances Acta Biochimica Polonica, 2012, 59, .	0.3	63
78	G protein-coupled receptorsrecent advances. Acta Biochimica Polonica, 2012, 59, 515-29.	0.3	36
79	ERK1/2 is dephosphorylated by a novel phosphatase – CacyBP/SIP. Biochemical and Biophysical Research Communications, 2011, 404, 179-183.	1.0	25
80	Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Progress in Lipid Research, 2011, 50, 267-277.	5.3	59
81	Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts $\hat{a} \in \text{``a DFT}$ investigation: relevance to Renu-Seeram bio solar cell. Journal of Molecular Modeling, 2011, 17, 1467-1472.	0.8	26
82	Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic \hat{l}^2 2AR. Journal of Molecular Modeling, 2011, 17, 2353-2366.	0.8	34
83	Protein hot spots at bio-nano interfaces. Materials Today, 2011, 14, 360-365.	8.3	10
84	Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. Journal of Molecular Modeling, 2010, 16, 1567-1576.	0.8	27
85	Mutations that increase both Hsp90 ATPase activity in vitro and Hsp90 drug resistance in vivo. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 575-583.	1.9	35
86	Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9644-9649.	3.3	72
87	Study on the Feasibility of Bacteriorhodopsin as Bio-Photosensitizer in Excitonic Solar Cell: A First Report. Journal of Nanoscience and Nanotechnology, 2009, 9, 1679-1687.	0.9	54
88	Generation and characterization of a novel, permanently active S100P mutant. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1078-1085.	1.9	7
89	Modulation of Molecular Interactions and Function by Rhodopsin Palmitylation. Biochemistry, 2009, 48, 4294-4304.	1.2	31
90	CacyBP/SIP binds ERK $1/2$ and affects transcriptional activity of Elk-1. Biochemical and Biophysical Research Communications, 2009, 380, 54-59.	1.0	40

#	Article	IF	Citations
91	Properties of Radical Anions of Triptindanones and Indanones: Electronic Communication and Stability of Ion Pairs Containing Lithium Cations. Journal of Physical Chemistry C, 2009, 113, 7436-7442.	1.5	4
92	Studies of the Activation Steps Concurrent to Ligand Binding in Î'OR and κOR Opioid Receptors Based on Molecular Dynamics Simulations. The Open Structural Biology Journal, 2009, 3, 51-63.	0.1	6
93	Molecular Models of the Interface between Anterior Pharynxâ€Defective Proteinâ€1 (APHâ€1) and Presenilin Involving GxxxG Motifs. ChemMedChem, 2008, 3, 627-634.	1.6	4
94	Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Laboratory Investigation, 2008, 88, 694-721.	1.7	71
95	Ca ²⁺ â€dependent Regulation of Phototransduction ^{â€} . Photochemistry and Photobiology, 2008, 84, 903-910.	1.3	50
96	Forerunner genes contiguous to RB1 contribute to the development of in situ neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13732-13737.	3.3	45
97	Stabilizing Effect of Zn2+ in Native Bovine Rhodopsin. Journal of Biological Chemistry, 2007, 282, 11377-11385.	1.6	61
98	Dimerization and Oligomerization of Rhodopsin and Other G Protein-Coupled Receptors. Challenges and Advances in Computational Chemistry and Physics, 2007, , 453-467.	0.6	0
99	Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: Genetic and bioinformatic assessment. Experimental Neurology, 2006, 200, 82-88.	2.0	57
100	Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 537-544.	1.4	24
101	Detecting Molecular Interactions that Stabilize Native Bovine Rhodopsin. Journal of Molecular Biology, 2006, 358, 255-269.	2.0	71
102	Linear patterns of Alzheimer's disease mutations along \hat{l} ±-helices of presenilins as a tool for PS-1 model construction. Journal of Neurochemistry, 2006, 98, 1560-1572.	2.1	9
103	Arrestin Interaction With Rhodopsin: Conceptual Models. Cell Biochemistry and Biophysics, 2006, 46, 1-16.	0.9	38
104	Autosomal Recessive Retinitis Pigmentosa and E150K Mutation in the Opsin Gene. Journal of Biological Chemistry, 2006, 281, 22289-22298.	1.6	21
105	Organization of rhodopsin molecules in native membranes of rod cells–an old theoretical model compared to new experimental data. Journal of Molecular Modeling, 2005, 11, 385-391.	0.8	10
106	A Novel GCAP1 Missense Mutation (L151F) in a Large Family with Autosomal Dominant Cone-Rod Dystrophy (adCORD)., 2005, 46, 1124.		61
107	A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor. Journal of Biological Chemistry, 2004, 279, 53828-53839.	1.6	57
108	Functional Characterization of Rhodopsin Monomers and Dimers in Detergents. Journal of Biological Chemistry, 2004, 279, 54663-54675.	1.6	118

#	Article	IF	Citations
109	Rhodopsin Signaling and Organization in Heterozygote Rhodopsin Knockout Mice. Journal of Biological Chemistry, 2004, 279, 48189-48196.	1.6	138
110	Diversity of Guanylate Cyclase-Activating Proteins (GCAPs) in Teleost Fish: Characterization of Three Novel GCAPs (GCAP4, GCAP5, GCAP7) from Zebrafish (Danio rerio) and Prediction of Eight GCAPs (GCAP1-8) in Pufferfish (Fugu rubripes). Journal of Molecular Evolution, 2004, 59, 204-217.	0.8	98
111	Oligomerization of G Protein-Coupled Receptors: Past, Present, and Futureâ€. Biochemistry, 2004, 43, 15643-15656.	1.2	213
112	A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface. Photochemical and Photobiological Sciences, 2004, 3, 628.	1.6	163
113	The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Molecular Membrane Biology, 2004, 21, 435-446.	2.0	7 5
114	The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters, 2004, 564, 281-288.	1.3	196
115	Evaluation of the role of the retinal G proteinâ€coupled receptor (RGR) in the vertebrate retina <i>in vivo</i> . Journal of Neurochemistry, 2003, 85, 944-956.	2.1	80
116	Rhodopsin dimers in native disc membranes. Nature, 2003, 421, 127-128.	13.7	732
117	Is rhodopsin dimeric in native retinal rods?. Nature, 2003, 426, 31-31.	13.7	13
118	G Protein-Coupled Receptor Rhodopsin: A Prospectus. Annual Review of Physiology, 2003, 65, 851-879.	5.6	237
119	Sequence Analyses of G-Protein-Coupled Receptors: Similarities to Rhodopsinâ€. Biochemistry, 2003, 42, 2759-2767.	1.2	339
120	Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2290-2295.	3.3	334
121	Ligand Channeling within a G-protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 24896-24903.	1.6	107
122	Pharmacological Chaperone-mediated in Vivo Folding and Stabilization of the P23H-opsin Mutant Associated with Autosomal Dominant Retinitis Pigmentosa. Journal of Biological Chemistry, 2003, 278, 14442-14450.	1.6	183
123	Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes. Journal of Biological Chemistry, 2003, 278, 21655-21662.	1.6	534
124	The Crystallographic Model of Rhodopsin and Its Use in Studies of Other G Protein–Coupled Receptors. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 375-397.	18.3	116
125	Biochemical and Physiological Properties of Rhodopsin Regenerated with 11-cis-6-Ring- and 7-Ring-retinals. Journal of Biological Chemistry, 2002, 277, 42315-42324.	1.6	36
126	Calcium-Binding Proteins: Intracellular Sensors from the Calmodulin Superfamily. Biochemical and Biophysical Research Communications, 2002, 290, 615-623.	1.0	149

#	Article	IF	Citations
127	Molecular dynamics of buspirone analogues interacting with the 5-HT1A and 5-HT2A serotonin receptors. Bioorganic and Medicinal Chemistry, 2001, 9, 881-895.	1.4	24
128	Calcium-sensitive Regions of GCAP1 as Observed by Chemical Modifications, Fluorescence, and EPR Spectroscopies. Journal of Biological Chemistry, 2001, 276, 43361-43373.	1.6	39
129	Mechanism of Rhodopsin Activation as Examined with Ring-constrained Retinal Analogs and the Crystal Structure of the Ground State Protein. Journal of Biological Chemistry, 2001, 276, 26148-26153.	1.6	37
130	THE INFLUENCE OFSTRUCTURAL EFFECTS ON THE CΟMPLEXINGABILITY ΟF CROWΕEIHERS. II. CESIUM COMPLEXES FORMED BY THE LIGANDS OF THE 18C6 TYPE. Main Group Metal Chemistry, 2000, 23, .	0.6	0
131	THE INFLUENCE OF STRUCTURAL EFFECTS ON THE COMPLEXING ABILITY OF CROWN ETHERS. Journal of Coordination Chemistry, 2000, 50, 131-140.	0.8	6
132	STABILITY OF THE NONACTIN-K+ COMPLEX IN APROTIC MEDIA. Main Group Metal Chemistry, 1999, 22, .	0.6	1
133	SOLVENT EFFECTS ON CRYPTAND (222) COMPLEXATION. Journal of Coordination Chemistry, 1999, 48, 147-155.	0.8	6
134	Rates of the halide ion cleavage from halo-9,10-diphenylanthracene anion radicals in DMF. Journal of Electroanalytical Chemistry, 1997, 440, 163-167.	1.9	4
135	Visible Absorption Spectra of Diaryl Carbonyl Radical Anions. Microchemical Journal, 1997, 57, 52-58.	2.3	O