Matthew A Cooper

List of Publications by Citations

Source: https://exaly.com/author-pdf/8687721/matthew-a-cooper-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 314
 19,337
 67
 130

 papers
 citations
 h-index
 g-index

 348
 23,669
 7.6
 7.1

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
314	A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. <i>Nature Medicine</i> , 2015 , 21, 248-55	50.5	1354
313	Optical biosensors in drug discovery. <i>Nature Reviews Drug Discovery</i> , 2002 , 1, 515-28	64.1	748
312	Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. <i>Science</i> , 2017 , 355, 842-847	33.3	602
311	Emerging pathogenic links between microbiota and the gut-lung axis. <i>Nature Reviews Microbiology</i> , 2017 , 15, 55-63	22.2	579
310	NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. <i>Journal of Hepatology</i> , 2017 , 66, 1037-1046	13.4	432
309	Human Monocytes Engage an Alternative Inflammasome Pathway. <i>Immunity</i> , 2016 , 44, 833-46	32.3	389
308	Label-free screening of bio-molecular interactions. <i>Analytical and Bioanalytical Chemistry</i> , 2003 , 377, 834-42	4.4	373
307	Natural product and natural product derived drugs in clinical trials. <i>Natural Product Reports</i> , 2014 , 31, 1612-61	15.1	365
306	PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). <i>Nature Cell Biology</i> , 2001 , 3, 679-82	23.4	361
305	Fix the antibiotics pipeline. <i>Nature</i> , 2011 , 472, 32	50.4	331
304	Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. <i>Microbiome</i> , 2016 , 4, 36	16.6	322
303	Antibiotics in the clinical pipeline in 2013. <i>Journal of Antibiotics</i> , 2013 , 66, 571-91	3.7	302
302	A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. <i>Journal of Molecular Recognition</i> , 2007 , 20, 154-84	2.6	289
301	Inflammasome inhibition prevents Bynuclein pathology and dopaminergic neurodegeneration in mice. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	286
300	T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. <i>Science</i> , 2016 , 352, aad1210	33.3	268
299	Biomarkers in chronic kidney disease: a review. <i>Kidney International</i> , 2011 , 80, 806-21	9.9	268
298	Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through all Mechanism Involving the IL-1 INLRP3 Inflammasome. <i>Journal of the American College of Cardiology</i> , 2018 , 71, 875-886	15.1	252

(2020-2002)

297	Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. <i>Molecular Cell</i> , 2002 , 9, 95-108	17.6	252
296	Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-□ and cognitive function in APP/PS1 mice. <i>Brain, Behavior, and Immunity,</i> 2017 , 61, 306-316	16.6	242
295	Antibiotics in the clinical pipeline at the end of 2015. <i>Journal of Antibiotics</i> , 2017 , 70, 3-24	3.7	226
294	Aminoglycoside antibiotics in the 21st century. ACS Chemical Biology, 2013, 8, 105-15	4.9	221
293	K Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. <i>Immunity</i> , 2016 , 45, 761-773	32.3	219
292	Role for NLRP3 Inflammasome-mediated, IL-1Dependent Responses in Severe, Steroid-Resistant Asthma. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017 , 196, 283-297	10.2	206
291	Antibiotics in the clinical pipeline in 2011. <i>Journal of Antibiotics</i> , 2011 , 64, 413-25	3.7	206
2 90	Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. <i>Journal of Experimental Medicine</i> , 2017 , 214, 1737-1752	16.6	205
289	Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia. <i>Journal of Experimental Botany</i> , 2011 , 62, 1743-55	7	194
288	NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. <i>European Journal of Immunology</i> , 2015 , 45, 2918-26	6.1	177
287	The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. <i>European Heart Journal</i> , 2017 , 38, 828-836	9.5	174
286	Advances in membrane receptor screening and analysis. <i>Journal of Molecular Recognition</i> , 2004 , 17, 286	5-3.165	167
285	Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. <i>Nature Nanotechnology</i> , 2008 , 3, 691-6	28.7	166
284	A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. <i>Analytical Biochemistry</i> , 2000 , 277, 196-205	3.1	162
283	The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. <i>Blood</i> , 2016 , 128, 2960-2975	2.2	162
282	Direct and sensitive detection of a human virus by rupture event scanning. <i>Nature Biotechnology</i> , 2001 , 19, 833-7	44.5	160
281	Glycopeptide antibiotics: back to the future. <i>Journal of Antibiotics</i> , 2014 , 67, 631-44	3.7	151
280	Metal complexes as a promising source for new antibiotics. <i>Chemical Science</i> , 2020 , 11, 2627-2639	9.4	136

279	QU-GENE: a simulation platform for quantitative analysis of genetic models. <i>Bioinformatics</i> , 1998 , 14, 632-53	7.2	136
278	A survey of the 2006-2009 quartz crystal microbalance biosensor literature. <i>Journal of Molecular Recognition</i> , 2011 , 24, 754-87	2.6	134
277	Neutrophilsa key component of ischemia-reperfusion injury. Shock, 2013, 40, 463-70	3.4	130
276	Helping Chemists Discover New Antibiotics. ACS Infectious Diseases, 2015, 1, 285-7	5.5	125
275	Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of Ehairpin Peptides. <i>ACS Infectious Diseases</i> , 2016 , 2, 442-450	5.5	119
274	The diagnostic sensitivity of dengue rapid test assays is significantly enhanced by using a combined antigen and antibody testing approach. <i>PLoS Neglected Tropical Diseases</i> , 2011 , 5, e1199	4.8	118
273	Developments in Glycopeptide Antibiotics. ACS Infectious Diseases, 2018, 4, 715-735	5.5	112
272	Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. <i>Analytical Chemistry</i> , 2010 , 82, 2237-42	7.8	111
271	Wheat Breeding Nurseries, Target Environments, and Indirect Selection for Grain Yield. <i>Crop Science</i> , 1997 , 37, 1168-1176	2.4	108
270	Surface plasmon resonance analysis at a supported lipid monolayer. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1998 , 1373, 101-11	3.8	107
269	The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. <i>PLoS ONE</i> , 2011 , 6, e29539	3.7	105
268	Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. <i>British Journal of Pharmacology</i> , 2016 , 173, 752-65	8.6	104
267	Imperfect coordination chemistry facilitates metal ion release in the Psa permease. <i>Nature Chemical Biology</i> , 2014 , 10, 35-41	11.7	103
266	A survey of the 2010 quartz crystal microbalance literature. <i>Journal of Molecular Recognition</i> , 2012 , 25, 451-73	2.6	100
265	Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. <i>Scientific Reports</i> , 2016 , 6, 27912	4.9	99
264	Optical biosensors: where next and how soon?. <i>Drug Discovery Today</i> , 2006 , 11, 1061-7	8.8	95
263	Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. <i>Cardiovascular Research</i> , 2019 , 115, 776-787	9.9	95
262	Biofunctionalized protein resistant oligo(ethylene glycol)-derived polymer brushes as selective immobilization and sensing platforms. <i>Biomacromolecules</i> , 2009 , 10, 2885-94	6.9	91

261	Inflammasomes in the lung. <i>Molecular Immunology</i> , 2017 , 86, 44-55	4.3	85
260	Inflammasomes in COPD and neutrophilic asthma. <i>Thorax</i> , 2015 , 70, 1199-201	7:3	80
259	Tumor-suppressor Gene Promoter Hypermethylation in Saliva of Head and Neck Cancer Patients. <i>Translational Oncology</i> , 2012 , 5, 321-6	4.9	79
258	An optimized whole blood assay measuring expression and activity of NLRP3-, NLRC4 and AIM2-inflammasomes. <i>Pediatric Rheumatology</i> , 2015 , 13,	3.5	78
257	Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. <i>Chemistry and Biology</i> , 1999 , 6, 891-9		77
256	Silver bullets: A new lustre on an old antimicrobial agent. <i>Biotechnology Advances</i> , 2018 , 36, 1391-1411	17.8	76
255	Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. Journal of Medicinal Chemistry, 2017 , 60, 7636-7657	8.3	73
254	Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria. <i>Nature Communications</i> , 2018 , 9, 22	17.4	73
253	Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity. <i>Immunity</i> , 2016 , 45, 333-45	32.3	73
252	IL-1Is an innate immune sensor of microbial proteolysis. <i>Science Immunology</i> , 2016 , 1,	28	73
252 251	IL-1[]s an innate immune sensor of microbial proteolysis. <i>Science Immunology</i> , 2016 , 1, Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77	8.3	7373
	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of</i>		73
251	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. <i>Nature</i>	8.3	73
251 250	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. <i>Nature Communications</i> , 2017 , 8, 14515 Clostridium difficile drug pipeline: challenges in discovery and development of new agents. <i>Journal</i>	8.3	73 72
251 250 249	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. <i>Nature Communications</i> , 2017 , 8, 14515 Clostridium difficile drug pipeline: challenges in discovery and development of new agents. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 5164-85 Development of anti-infectives using phage display: biological agents against bacteria, viruses, and	8.3 17.4 8.3	73 72 72
251 250 249 248	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. <i>Nature Communications</i> , 2017 , 8, 14515 Clostridium difficile drug pipeline: challenges in discovery and development of new agents. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 5164-85 Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. <i>Antimicrobial Agents and Chemotherapy</i> , 2012 , 56, 4569-82 The Roles of Dimerization and Membrane Anchoring in Activity of Glycopeptide Antibiotics against	8.3 17.4 8.3	73 72 72 69
251 250 249 248	Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 1068-77 Scaffolding and completing genome assemblies in real-time with nanopore sequencing. <i>Nature Communications</i> , 2017 , 8, 14515 Clostridium difficile drug pipeline: challenges in discovery and development of new agents. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 5164-85 Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. <i>Antimicrobial Agents and Chemotherapy</i> , 2012 , 56, 4569-82 The Roles of Dimerization and Membrane Anchoring in Activity of Glycopeptide Antibiotics against Vancomycin-Resistant Bacteria. <i>Journal of the American Chemical Society</i> , 1997 , 119, 12041-12047 The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. <i>Glia</i> ,	8.3 17.4 8.3 5.9	73 72 72 69 66

243	Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. <i>FEBS Journal</i> , 2007 , 274, 5471-80	5.7	60
242	Non-optical screening platforms: the next wave in label-free screening?. <i>Drug Discovery Today</i> , 2006 , 11, 1068-74	8.8	59
241	Genotype-by-management interactions for grain yield and grain protein concentration of wheat. <i>Field Crops Research</i> , 2001 , 69, 47-67	5.5	59
240	Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinION(TM) sequencing. <i>GigaScience</i> , 2016 , 5, 32	7.6	58
239	An "Unlikely" Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI. <i>ACS Infectious Diseases</i> , 2016 , 2, 478-88	5.5	57
238	Strain- and host species-specific inflammasome activation, IL-1Irelease, and cell death in macrophages infected with uropathogenic Escherichia coli. <i>Mucosal Immunology</i> , 2016 , 9, 124-36	9.2	57
237	Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. <i>Arthritis Research and Therapy</i> , 2014 , 16, 419	5.7	56
236	G-quadruplex-specific peptide-hemicyanine ligands by partial combinatorial selection. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5594-5	16.4	55
235	Whole genome sequence analysis of the first Australian OXA-48-producing outbreak-associated Klebsiella pneumoniae isolates: the resistome and in vivo evolution. <i>PLoS ONE</i> , 2013 , 8, e59920	3.7	55
234	Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. <i>Nature Microbiology</i> , 2017 , 2, 1435-1445	26.6	54
233	Synergistic killing of NDM-producing MDR Klebsiella pneumoniae by two 'old' antibiotics-polymyxin B and chloramphenicol. <i>Journal of Antimicrobial Chemotherapy</i> , 2015 , 70, 2589-97	5.1	54
232	PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome. <i>Journal of Biological Chemistry</i> , 2017 , 292, 826-836	5.4	53
231	A novel method of resistance for influenza against a channel-blocking antiviral drug. <i>Proteins: Structure, Function and Bioinformatics</i> , 2004 , 55, 251-7	4.2	53
230	Sr/Ca in multiple species of planktonic foraminifera: Implications for reconstructions of seawater Sr/Ca. <i>Geochemistry, Geophysics, Geosystems</i> , 2000 , 1, n/a-n/a	3.6	53
229	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. <i>ACS Central Science</i> , 2015 , 1, 328-34	16.8	52
228	Oncogenic Kras causes myeloproliferation via NLRP3 inflammasome activation. <i>Nature Communications</i> , 2020 , 11, 1659	17.4	52
227	Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. <i>Nature Nanotechnology</i> , 2014 , 9, 225-32	28.7	52
226	The salt dependence of DNA recognition by NF-kappaB p50: a detailed kinetic analysis of the effects on affinityand specificity. <i>Nucleic Acids Research</i> , 1999 , 27, 1063-9	20.1	51

(2012-2020)

An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. <i>Nature Communications</i> , 2020 , 11, 3184	17.4	50
Antibacterial Low Molecular Weight Cationic Polymers: Dissecting the Contribution of Hydrophobicity, Chain Length and Charge to Activity. <i>RSC Advances</i> , 2016 , 6, 15469-15477	3.7	50
The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. <i>FEBS Letters</i> , 2002 , 512, 47-51	3.8	50
Binding of an inhibitor of the p53/MDM2 interaction to MDM2. <i>Chemical Communications</i> , 2003 , 316-7	5.8	49
Kinetic analysis of antibody-antigen interactions at a supported lipid monolayer. <i>Analytical Biochemistry</i> , 1999 , 276, 36-47	3.1	49
Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. <i>Scientific Reports</i> , 2015 , 5, 16145	4.9	48
Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. <i>Biochemical Journal</i> , 1998 , 333 (Pt 3), 677-83	3.8	48
Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. <i>ACS Infectious Diseases</i> , 2017 , 3, 917-926	5.5	47
Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae. <i>Innate Immunity</i> , 2014 , 20, 350-63	2.7	47
Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity: comparison of HK-2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubular cells. <i>Pharmacology Research and Perspectives</i> , 2015 , 3, e00148	3.1	47
Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. <i>Bioorganic and Medicinal Chemistry</i> , 2000 , 8, 2609-16	3.4	47
Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling. <i>Immunology and Cell Biology</i> , 2016 , 94, 787-95	5	47
Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. <i>Cell Chemical Biology</i> , 2018 , 25, 380-391.e5	8.2	44
Pathway-selective antagonism of proteinase activated receptor 2. <i>British Journal of Pharmacology</i> , 2014 , 171, 4112-24	8.6	43
Direct quantification of analyte concentration by resonant acoustic profiling. <i>Clinical Chemistry</i> , 2005 , 51, 1962-72	5.5	42
C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and Earrestin recruitment. <i>Immunology and Cell Biology</i> , 2014 , 92, 631-9	5	41
Cell- and biomarker-based assays for predicting nephrotoxicity. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2014 , 10, 1621-35	5.5	41
Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. <i>Current Topics in Medicinal Chemistry</i> , 2012 , 12, 1500-13	3	40
	Nature Communications, 2020, 11, 3184 Antibacterial Low Molecular Weight Cationic Polymers: Dissecting the Contribution of Hydrophobicity, Chain Length and Charge to Activity. RSC Advances, 2016, 6, 15469-15477 The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Letters, 2002, 512, 47-51 Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chemical Communications, 2003, 316-7 Kinetic analysis of antibody-antigen interactions at a supported lipid monolayer. Analytical Biochemistry, 1999, 276, 36-47 Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 2015, 5, 16145 Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochemical Journal, 1998, 333 (Pt.3), 677-83 Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infectious Diseases, 2017, 3, 917-926 Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae. Innate Immunity, 2014, 20, 350-63 Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity: comparison of HKC2: immortalized human proximal tubular cells. Pharmacology Research and Perspectives, 2015, 3, e00148 Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. Bioorganic and Medicinal Chemistry, 2000, 8, 2609-16 Discovery of Functionally selective C5aR2 ligands: novel modulators of C5a signalling. Immunology and Cell Biology, 2016, 94, 787-95 Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391.e5 Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391.e5 Pathway-selective antagonism of proteinase	Antibacterial Low Molecular Weight Cationic Polymers: Dissecting the Contribution of Hydrophobicity, Chain Length and Charge to Activity. RSC Advances, 2016, 6, 15469-15477 The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Letters, 2002, 512, 47-51 Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chemical Communications, 2003, 316-7 Similar Sinchemistry, 1999, 276, 36-47 Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Scientific Reports, 2015, 5, 16145 Bacillus thuringiensis Cry1Ac toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochemical Journal, 1998, 333 (Pt 3), 677-83 Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infectious Diseases, 2017, 3, 917-926 Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae. Innate Immunity, 2014, 20, 350-63 Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity: comparison of HK-2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubule and proper proper proper proper in the properties, Bioorganic and Medicinal Chemistry, 2009, 8, 2609-16 Discovery of functionally selective C5aR2 ligands: novel modulators of C5a signalling, Immunology and Cell Biology, 2016, 94, 787-95 Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391-65 Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391-65 Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, 25, 380-391-65 Scructure, Function of analyte concentration

207	Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. <i>Phytochemistry</i> , 2013 , 93, 162-9	4	39
206	Metronidazole-triazole conjugates: activity against Clostridium difficile and parasites. <i>European Journal of Medicinal Chemistry</i> , 2015 , 101, 96-102	6.8	38
205	The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. <i>Molecular Immunology</i> , 2013 , 56, 705-19	4.3	38
204	Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. <i>Biomacromolecules</i> , 2012 , 13, 1981-9	6.9	38
203	Timed-release polymer nanoparticles. <i>Biomacromolecules</i> , 2013 , 14, 495-502	6.9	38
202	Some vocabulary and grammar for the analysis of multi-environment trials, as applied to the analysis of FPB and PPB trials. <i>Euphytica</i> , 2001 , 122, 477-490	2.1	38
201	NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. <i>Oncotarget</i> , 2017 , 8, 99740-99756	3.3	37
200	High Affinity Surface Binding of a Strongly Dimerizing Vancomycin-Group Antibiotic to a Model of Resistant Bacteria. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5259-5265	16.4	37
199	Targeting the NLRP3 Inflammasome With Inhibitor MCC950 Prevents Aortic Aneurysms and Dissections in Mice. <i>Journal of the American Heart Association</i> , 2020 , 9, e014044	6	37
198	Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis. <i>European Journal of Medicinal Chemistry</i> , 2016 , 120, 353-62	6.8	36
197	C5a, but not C5a-des Arg, induces upregulation of heteromer formation between complement C5a receptors C5aR and C5L2. <i>Immunology and Cell Biology</i> , 2013 , 91, 625-33	5	35
196	Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. <i>Aging</i> , 2017 , 9, 1595-1606	5.6	35
195	TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. <i>Cell Reports</i> , 2020 , 33, 108326	10.6	35
194	A new antibiotic with potent activity targets MscL. <i>Journal of Antibiotics</i> , 2015 , 68, 453-62	3.7	34
193	Danger-associated extracellular ATP counters MDSC therapeutic efficacy in acute GVHD. <i>Blood</i> , 2019 , 134, 1670-1682	2.2	33
192	Ramoplanin at bactericidal concentrations induces bacterial membrane depolarization in Staphylococcus aureus. <i>Antimicrobial Agents and Chemotherapy</i> , 2014 , 58, 6819-27	5.9	33
191	Fine tuning the disassembly time of thermoresponsive polymer nanoparticles. <i>Biomacromolecules</i> , 2013 , 14, 3463-71	6.9	33
190	A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing. <i>Journal of Nanobiotechnology</i> , 2008 , 6, 5	9.4	33

(2017-2003)

189	Biosensor profiling of molecular interactions in pharmacology. <i>Current Opinion in Pharmacology</i> , 2003 , 3, 557-62	5.1	33	
188	Increased Endovascular Staphylococcus aureus Inoculum Is the Link Between Elevated Serum Interleukin 10 Concentrations and Mortality in Patients With Bacteremia. <i>Clinical Infectious Diseases</i> , 2017, 64, 1406-1412	11.6	32	
187	From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative "Superbugs" Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. <i>Microbial Drug Resistance</i> , 2017 , 23, 640-650	2.9	32	
186	Cationic Acrylate Oligomers Comprising Amino Acid Mimic Moieties Demonstrate Improved Antibacterial Killing Efficiency. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 531-536	7.3	32	
185	A community-based approach to new antibiotic discovery. <i>Nature Reviews Drug Discovery</i> , 2015 , 14, 587	-8 4.1	32	
184	Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain. <i>Inflammopharmacology</i> , 2018 , 26, 77-86	5.1	32	
183	Structure-activity relationships for the binding of polymyxins with human £1-acid glycoprotein. <i>Biochemical Pharmacology</i> , 2012 , 84, 278-91	6	32	
182	Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors. <i>ChemMedChem</i> , 2017 , 12, 1449-1457	3.7	32	
181	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. <i>ELife</i> , 2017 , 6,	8.9	32	
180	Surface plasmon resonance analysis of glycopeptide antibioticactivity at a model membrane surface. <i>Chemical Communications</i> , 1997 , 1625-1626	5.8	31	
179	The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. <i>MSphere</i> , 2016 , 1,	5	31	
178	Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli. <i>ACS Infectious Diseases</i> , 2016 , 2, 688-701	5.5	31	
177	Polishing the tarnished silver bullet: the quest for new antibiotics. Essays in Biochemistry, 2017, 61, 103-	1/1.6	30	
176	Structural and Functional Characterization of a Cross-Reactive Dengue Virus Neutralizing Antibody that Recognizes a Cryptic Epitope. <i>Structure</i> , 2018 , 26, 51-59.e4	5.2	29	
175	Vancomycin: ligand recognition, dimerization and super-complex formation. <i>FEBS Journal</i> , 2013 , 280, 1294-307	5.7	29	
174	Identification of antitubercular benzothiazinone compounds by ligand-based design. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 7940-4	8.3	29	
173	Using label-free screening technology to improve efficiency in drug discovery. <i>Expert Opinion on Drug Discovery</i> , 2012 , 7, 123-31	6.2	29	
172	Small-Molecule Inhibitors of the SOX18 Transcription Factor. <i>Cell Chemical Biology</i> , 2017 , 24, 346-359	8.2	28	

171	Econotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3209-12	16.4	28
170	Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 4345-52	5.7	28
169	Variation of the net charge, lipophilicity, and side chain flexibility in Dmt(1)-DALDA: Effect on Opioid Activity and Biodistribution. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 9549-61	8.3	28
168	The effect of environment on the recognition and binding of vancomycin to native and resistant forms of lipid II. <i>Biophysical Journal</i> , 2011 , 101, 2684-92	2.9	28
167	Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. <i>Microbial Genomics</i> , 2018 , 4,	4.4	28
166	The NLRP3 Inflammasome Suppresses Protective Immunity to Gastrointestinal Helminth Infection. <i>Cell Reports</i> , 2018 , 23, 1085-1098	10.6	27
165	An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants. <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 4490-8	3.4	27
164	Molecular basis for the increased polymyxin susceptibility of Klebsiella pneumoniae strains with under-acylated lipid A. <i>Innate Immunity</i> , 2013 , 19, 265-77	2.7	27
163	Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties. <i>ACS Chemical Biology</i> , 2017 , 12, 2324-2334	4.9	27
162	Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein Bubunits. <i>Biochemical Journal</i> , 2002 , 362, 725-731	3.8	27
161	Unusual RNA and DNA binding properties of a novel pyrrolidinellmide oligonucleotide mimic (POM). <i>Chemical Communications</i> , 2000 , 2251-2252	5.8	27
160	Drug-drug plasma protein binding interactions of ivacaftor. <i>Journal of Molecular Recognition</i> , 2015 , 28, 339-48	2.6	26
159	Natural product libraries: assembly, maintenance, and screening. <i>Planta Medica</i> , 2014 , 80, 1161-70	3.1	26
158	Comparison of surface plasmon resonance, resonant waveguide grating biosensing and enzyme linked immunosorbent assay (ELISA) in the evaluation of a dengue virus immunoassay. <i>Biosensors</i> , 2013 , 3, 297-311	5.9	26
157	Chemical force microscopy with active enzymes. <i>Biophysical Journal</i> , 2001 , 80, 2471-6	2.9	26
156	Structure aided design of chimeric antibiotics. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 247	282333	25
155	Effects of Microplate Type and Broth Additives on Microdilution MIC Susceptibility Assays. <i>Antimicrobial Agents and Chemotherapy</i> , 2019 , 63,	5.9	25
154	Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies. <i>Journal of Inorganic Biochemistry</i> , 2017 , 167, 134-141	4.2	24

(2017-2015)

153	Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. <i>Nature Communications</i> , 2015 , 6, 7719	17.4	24	
152	Probing the reactivity of o-phthalaldehydic acid/methyl ester: synthesis of N-isoindolinones and 3-arylaminophthalides. <i>Chemical Communications</i> , 2013 , 49, 8407-9	5.8	24	
151	A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. <i>Journal of Molecular Biology</i> , 2004 , 339, 1059-75	6.5	24	
150	In vitro Antimicrobial Activity of Acne Drugs Against Skin-Associated Bacteria. <i>Scientific Reports</i> , 2019 , 9, 14658	4.9	23	
149	Direct acoustic profiling of DNA hybridisation using HSV type 1 viral sequences. <i>Analyst, The</i> , 2008 , 133, 52-7	5	23	
148	Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. <i>Pharmacological Reviews</i> , 2021 , 73, 968-1000	22.5	23	
147	Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. <i>Bioorganic and Medicinal Chemistry</i> , 2016 , 24, 2235-41	3.4	23	
146	Identification, Synthesis, and Biological Evaluation of the Major Human Metabolite of NLRP3 Inflammasome Inhibitor MCC950. <i>ACS Medicinal Chemistry Letters</i> , 2016 , 7, 1034-1038	4.3	23	
145	The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin?. <i>Trends in Microbiology</i> , 2019 , 27, 339-354	12.4	23	
144	NLRP3 Inflammasome Inhibition by MCC950 in Aged Mice Improves Health via Enhanced Autophagy and PPAREActivity. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2020 , 75, 1457-1464	6.4	23	
143	Realtime analysis and visualization of MinION sequencing data with npReader. <i>Bioinformatics</i> , 2016 , 32, 764-6	7.2	22	
142	Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. <i>Biopolymers</i> , 2011 , 96, 147-57	2.2	22	
141	Synthesis of N-acylaziridines from Emido selenides. <i>Journal of the Chemical Society, Perkin Transactions 1</i> , 2001 , 944-945		22	
140	A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance. <i>Scientific Reports</i> , 2016 , 6, 22791	4.9	22	
139	EMyrtoxin-Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membrane-Disrupting, and Nociceptive Activities. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8495-8499	16.4	21	
138	Efficient synthesis of anacardic acid analogues and their antibacterial activities. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2013 , 23, 1667-70	2.9	21	
137	Quantitative detection of staphylococcal enterotoxin B by resonant acoustic profiling. <i>Analytical Chemistry</i> , 2009 , 81, 3896-902	7.8	21	
136	Investigating the Interaction of Octapeptin A3 with Model Bacterial Membranes. <i>ACS Infectious Diseases</i> , 2017 , 3, 606-619	5.5	20	

135	Amplification free detection of herpes simplex virus DNA. <i>Analyst, The</i> , 2011 , 136, 1599-607	5	20
134	Screening strategies to identify new antibiotics. <i>Current Drug Targets</i> , 2012 , 13, 373-87	3	19
133	Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers. <i>Polymer Chemistry</i> , 2020 , 11, 84-90	4.9	19
132	Complete Genome Sequence of Klebsiella quasipneumoniae subsp. similipneumoniae Strain ATCC 700603. <i>Genome Announcements</i> , 2016 , 4,		19
131	Role of the NLRP3 inflammasome in a model of acute burn-induced pain. <i>Burns</i> , 2017 , 43, 304-309	2.3	18
130	Drug-binding energetics of human ⊞-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations. <i>Journal of Molecular Recognition</i> , 2012 , 25, 642-56	2.6	18
129	Measurement of drug lipophilicity and pKa using acoustics. <i>Analytical Chemistry</i> , 2012 , 84, 2609-13	7.8	18
128	Molecular Characterization of Lipopolysaccharide Binding to Human ⊞-Acid Glycoprotein. <i>Journal of Lipids</i> , 2012 , 2012, 475153	2.7	18
127	Resolving biofilm infections: current therapy and drug discovery strategies. <i>Current Drug Targets</i> , 2012 , 13, 1375-85	3	18
126	Biosensing using rupture event scanning (REVS) Measurement Science and Technology, 2003, 14, 1888-	1 <u>8</u> 93	18
125	Hydroxyselenation of allylic alcohols. <i>Tetrahedron Letters</i> , 1995 , 36, 2327-2330	2	18
124	Chemical philanthropy: a path forward for antibiotic discovery?. Future Medicinal Chemistry, 2016, 8, 925	5 2 9.1	18
123	Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria. <i>Bioconjugate Chemistry</i> , 2017 , 28, 353-3	61.3	17
122	Discovery of novel pneumococcal surface antigen A (PsaA) inhibitors using a fragment-based drug design approach. <i>ACS Chemical Biology</i> , 2015 , 10, 1511-20	4.9	17
121	Synthesis of essramycin and comparison of its antibacterial activity. <i>Journal of Natural Products</i> , 2010 , 73, 1940-2	4.9	17
120	Design, synthesis, conformational analysis and nucleic acid hybridisation properties of thymidyl pyrrolidine-amide oligonucleotide mimics (POM). <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 3277-92	3.9	17
119	Selenium induced stereoselective cyclization of N-protected 3-hydroxy-4-pentenylamines. <i>Tetrahedron Letters</i> , 1992 , 33, 5999-6002	2	17
118	A nanoparticle-based method for culture-free bacterial DNA enrichment from whole blood. <i>Biosensors and Bioelectronics</i> , 2018 , 99, 150-155	11.8	16

(2016-2014)

117	In vivo evolution of antimicrobial resistance in a series of Staphylococcus aureus patient isolates: the entire picture or a cautionary tale?. <i>Journal of Antimicrobial Chemotherapy</i> , 2014 , 69, 363-7	5.1	16
116	Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Organic and Biomolecular Chemistry, 2014, 12, 2568-75	3.9	16
115	19F NMR in the measurement of binding affinities of chloroeremomycin to model bacterial cell-wall surfaces that mimic VanA and VanB resistance. <i>Chemistry and Biology</i> , 1998 , 5, 329-37		16
114	Profiling of molecular interactions in real time using acoustic detection. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 2382-6	11.8	16
113	Mechanism of the regulation of type IB phosphoinositide 3OH-kinase byG-protein betagamma subunits. <i>Biochemical Journal</i> , 2002 , 362, 725-31	3.8	16
112	Selenium induced stereoselective cyclization of N-substituted-4-hydroxy-5-hexenylamines. <i>Tetrahedron Letters</i> , 1994 , 35, 5065-5068	2	16
111	Light-Activated Rhenium Complexes with Dual Mode of Action against Bacteria. <i>Chemistry - A European Journal</i> , 2020 , 26, 2852-2858	4.8	15
110	Synthesis of octapeptin C4 and biological profiling against NDM-1 and polymyxin-resistant bacteria. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2017 , 27, 2407-2409	2.9	14
109	Structure-Function Studies of Polymyxin B Lipononapeptides. <i>Molecules</i> , 2019 , 24,	4.8	14
108	Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. <i>MedChemComm</i> , 2019 , 10, 901-906	5	14
107	Non-canonical Caspase-1 Signaling Drives RIP2-Dependent and TNFMediated Inflammation In [Vivo. Cell Reports, 2020 , 30, 2501-2511.e5	10.6	14
106	Lipoamino acids as major components of absorption promoters in drug delivery. <i>Current Topics in Medicinal Chemistry</i> , 2012 , 12, 1562-80	3	14
105	Formation of dihydroxyselenides from allylic alcohols and their conversion to Ehydroxy epoxides via substitution of a phenylselenonyl group. <i>Tetrahedron</i> , 2004 , 60, 7963-7972	2.4	14
104	Platinum-based anticancer drugs encapsulated liposome and polymeric micelle formulation in clinical trials. <i>Biochemical Compounds</i> , 2016 , 4, 1		14
103	Plasma Protein Binding Structure-Activity Relationships Related to the N-Terminus of Daptomycin. <i>ACS Infectious Diseases</i> , 2017 , 3, 249-258	5.5	13
102	GMP Synthase Is Required for Virulence Factor Production and Infection by. <i>Journal of Biological Chemistry</i> , 2017 , 292, 3049-3059	5.4	13
101	Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. <i>GigaScience</i> , 2020 , 9,	7.6	13
100	Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in Cryptococcus neoformans. <i>ACS Infectious Diseases</i> , 2016 , 2, 651-663	5.5	13

99	A paramagnetic-reporter two-particle system for amplification-free detection of DNA in serum. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 499-501	11.8	13
98	A Comparative Study of Impedance versus Optical Label-Free Systems Relative to Labelled Assays in a Predominantly Gi Coupled GPCR (C5aR) Signalling. <i>Biosensors</i> , 2012 , 2, 273-90	5.9	13
97	A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling. <i>Journal of Nanobiotechnology</i> , 2010 , 8, 3	9.4	13
96	Synthesis and Substitution Reactions of N-Protected 2-(Phenylselenonylmethyl)pyrrolidines. <i>Australian Journal of Chemistry</i> , 1997 , 50, 181	1.2	13
95	Improved Immunoassay Sensitivity in Serum as a Result of Polymer-Entrapped Quantum Dots: 'Papaya Particles'. <i>Analytical Chemistry</i> , 2015 , 87, 6150-7	7.8	12
94	Old dogs and new tricks in antimicrobial discovery. Current Opinion in Microbiology, 2016, 33, 25-34	7.9	12
93	Detection and Investigation of Eagle Effect Resistance to Vancomycin in With an ATP-Bioluminescence Assay. <i>Frontiers in Microbiology</i> , 2018 , 9, 1420	5.7	12
92	Derivation of ligands for the complement C3a receptor from the C-terminus of C5a. <i>European Journal of Pharmacology</i> , 2014 , 745, 176-81	5.3	12
91	Modelling Plant Breeding Programs as Search Strategies on a Complex Response Surface. <i>Lecture Notes in Computer Science</i> , 1999 , 171-178	0.9	12
90	Fluorescent macrolide probes - synthesis and use in evaluation of bacterial resistance. <i>RSC Chemical Biology</i> , 2020 , 1, 395-404	3	12
89	Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 11349-11371	8.3	12
88	Norbornane-based cationic antimicrobial peptidomimetics targeting the bacterial membrane. <i>European Journal of Medicinal Chemistry</i> , 2018 , 160, 9-22	6.8	12
87	Exploiting Macromolecular Design To Optimize the Antibacterial Activity of Alkylated Cationic Oligomers. <i>Biomacromolecules</i> , 2018 , 19, 4629-4640	6.9	12
86	Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. <i>Phytochemistry</i> , 2016 , 124, 79-85	4	11
85	Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria?. <i>Expert Review of Anti-Infective Therapy</i> , 2018 , 16, 485-499	5.5	11
84	Octapeptin C4 and polymyxin resistance occur via distinct pathways in an epidemic XDR Klebsiella pneumoniae ST258 isolate. <i>Journal of Antimicrobial Chemotherapy</i> , 2019 , 74, 582-593	5.1	11
83	Elucidating the Lipid Binding Properties of Membrane-Active Peptides Using Cyclised Nanodiscs. <i>Frontiers in Chemistry</i> , 2019 , 7, 238	5	10
82	Synthesis of Norbornane Bisether Antibiotics via Silver-mediated Alkylation. <i>RSC Advances</i> , 2015 , 5, 28	58;2 7 28.	596

(2020-2015)

81	Synthesis and evaluation of cationic norbornanes as peptidomimetic antibacterial agents. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 6225-41	3.9	10
80	Signal transduction profiling using label-free biosensors. <i>Journal of Receptor and Signal Transduction Research</i> , 2009 , 29, 224-33	2.6	10
79	Profiling molecular interactions using label-free acoustic screening. <i>Drug Discovery Today: Technologies</i> , 2005 , 2, 241-5	7.1	10
78	The Reactions of N-Substituted 2-(Dimethylallyl)aniline Compounds with Phenylselanyl Halides. <i>Australian Journal of Chemistry</i> , 2000 , 53, 123	1.2	10
77	ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. <i>Journal of Biological Chemistry</i> , 2017 , 292, 11829-11839	5.4	9
76	Flemingin-Type Prenylated Chalcones from the Sarawak Rainforest Plant Desmodium congestum. <i>Journal of Natural Products</i> , 2015 , 78, 2141-4	4.9	9
75	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. <i>Nanomedicine</i> , 2015 , 10, 3359-71	5.6	9
74	How to Stimulate and Facilitate Early Stage Antibiotic Discovery. ACS Infectious Diseases, 2020, 6, 1302-	13.94	9
73	Multiple inflammasomes may regulate the interleukin-1-driven inflammation in protracted bacterial bronchitis. <i>ERJ Open Research</i> , 2018 , 4,	3.5	9
72	Quantification of small molecule-receptor affinities and kinetics by acoustic profiling. <i>Assay and Drug Development Technologies</i> , 2006 , 4, 565-73	2.1	9
71	Antibacterial Nerol Cinnamates from the Australian Plant Eremophila longifolia. <i>Journal of Natural Products</i> , 2017 , 80, 1178-1181	4.9	8
70	Improving Drought Tolerance in Maize 2010 , 173-253		8
69	Scaffolding and Completing Genome Assemblies in Real-time with Nanopore Sequencing		8
68	An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6796-6	8 0 9	8
67	Human Edefensin-2 suppresses key features of asthma in murine models of allergic airways disease. <i>Clinical and Experimental Allergy</i> , 2021 , 51, 120-131	4.1	8
66	Surface mediated cooperative interactions of drugs enhance mechanical forces for antibiotic action. <i>Scientific Reports</i> , 2017 , 7, 41206	4.9	7
65	Evaluation of direct versus multi-layer passivation and capture chemistries for nanoparticle-based biosensor applications. <i>Biosensors and Bioelectronics</i> , 2015 , 67, 769-74	11.8	7
64	Antitubercular and Antiparasitic 2-Nitroimidazopyrazinones with Improved Potency and Solubility. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 15726-15751	8.3	7

63	Separation and detection of bacteria using rupture event scanning. <i>Analytica Chimica Acta</i> , 2011 , 702, 233-8	6.6	7
62	Interleukin-1 Buppression dampens inflammatory leukocyte production and uptake in atherosclerosis. Cardiovascular Research, 2021,	9.9	7
61	Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. <i>ACS Biomaterials Science and Engineering</i> , 2021 ,	5.5	7
60	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. <i>Australian Journal of Chemistry</i> , 2017 , 70, 162	1.2	6
59	Facile synthesis of mono- and bis-methylated Fmoc-Dap, -Dab and -Orn amino acids. <i>Chemical Communications</i> , 2015 , 51, 4496-8	5.8	6
58	Transcriptomic responses of a New Delhi metallo-Elactamase-producing Klebsiella pneumoniae isolate to the combination of polymyxin B and chloramphenicol. <i>International Journal of Antimicrobial Agents</i> , 2020 , 56, 106061	14.3	6
57	Flow-cytometry detection of fluorescent magnetic nanoparticle clusters increases sensitivity of dengue immunoassay. <i>Analytica Chimica Acta</i> , 2020 , 1107, 85-91	6.6	6
56	Discovery of Cephalosporin-3'-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model. <i>ACS Infectious Diseases</i> , 2020 , 6, 1460-1479	5.5	6
55	CD8 lineage dendritic cells determine adaptive immune responses to inflammasome activation upon sterile skin injury. <i>Experimental Dermatology</i> , 2018 , 27, 71-79	4	6
54	Does the Sauerbrey equation hold true for binding of peptides and globular proteins to a QCM?. <i>Sensing and Bio-Sensing Research</i> , 2016 , 11, 71-77	3.3	6
53	2011,		
	2011,		6
52	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1142-8	3.9	6
52 51	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by	3·9 5·5	
	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1142-8 Real-time label-free acoustic technology for rapid detection of Escherichia coli O157:H7. <i>Clinical</i>		6
51	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1142-8 Real-time label-free acoustic technology for rapid detection of Escherichia coli O157:H7. <i>Clinical Chemistry</i> , 2006 , 52, 2148-51 The Photodynamic Therapy (PDT) Anticancer Activity of a Range of Porphyrin Dimers and Related	5.5	6 6
51	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1142-8 Real-time label-free acoustic technology for rapid detection of Escherichia coli O157:H7. <i>Clinical Chemistry</i> , 2006 , 52, 2148-51 The Photodynamic Therapy (PDT) Anticancer Activity of a Range of Porphyrin Dimers and Related Compounds Derived from Hematoporphyrin. <i>Australian Journal of Chemistry</i> , 2004 , 57, 1091 The Plasma Protein Binding Proteome of Ertapenem: A Novel Compound-Centric Proteomic	5.5	6 6
51 50 49	Vancomycin dimer formation between analogues of bacterial peptidoglycan surfaces probed by force spectroscopy. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1142-8 Real-time label-free acoustic technology for rapid detection of Escherichia coli O157:H7. <i>Clinical Chemistry</i> , 2006 , 52, 2148-51 The Photodynamic Therapy (PDT) Anticancer Activity of a Range of Porphyrin Dimers and Related Compounds Derived from Hematoporphyrin. <i>Australian Journal of Chemistry</i> , 2004 , 57, 1091 The Plasma Protein Binding Proteome of Ertapenem: A Novel Compound-Centric Proteomic Approach for Elucidating Drug-Plasma Protein Binding Interactions. <i>ACS Chemical Biology</i> , 2016 , 11, 3. An optimized whole blood assay measuring expression and activity of NLRP3, NLRC4 and AIM2	5.5 1.2 35 3 -336	6 6 6 4 ⁶

45	Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives. <i>Magnetic Resonance in Chemistry</i> , 2016 , 54, 880-886	2.1	5
44	Genotype Environment Interactions, Selection Response and Heterosis. Assa, Cssa and Sssa, 2015, 81-	920.3	5
43	High-throughput analysis of biomolecular interactions and cellular responses with resonant waveguide grating biosensors206-222		5
42	Single-step biocompatible coating for sulfhydryl coupling of receptors using 2-(pyridinyldithio)ethylcarbamoyl dextran. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 61, 113-7	6	5
41	Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinIONTM sequencing		5
40	Acetate protects against intestinal ischemia-reperfusion injury independent of its cognate free fatty acid 2 receptor. <i>FASEB Journal</i> , 2020 , 34, 10418-10430	0.9	5
39	Antimicrobial Octapeptin C4 Analogues Active against Cryptococcus Species. <i>Antimicrobial Agents and Chemotherapy</i> , 2018 , 62,	5.9	5
38	The Small Molecule NLRP3 Inflammasome Inhibitor MCC950 Does Not Alter Wound Healing in Obese Mice. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	5
37	The Growing Influence of Nanotechnology in Our Lives 2017 , 1-20		4
36	Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. <i>Molecules</i> , 2015 , 20, 10415-34	4.8	4
35	QCM-based rapid analysis of DNA. Sensing and Bio-Sensing Research, 2015, 4, 11-15	3.3	4
34	Cyclizations using Selenium Chemistry for Substituted 3-Hydroxypiperidines and 3-Hydroxypyrrolidines. <i>Australian Journal of Chemistry</i> , 2011 , 64, 1327	1.2	4
33	Characterisation of small molecule ligands 4CMTB and 2CTAP as modulators of human FFA2 receptor signalling. <i>Scientific Reports</i> , 2018 , 8, 17819	4.9	4
32	A template guided approach to generating cell permeable inhibitors of Staphylococcus aureus biotin protein ligase. <i>Tetrahedron</i> , 2018 , 74, 1175-1183	2.4	3
31	Monoacetylation of Carbohydrate Diols via Transesterification with Ethyl Acetate. <i>Australian Journal of Chemistry</i> , 2014 , 67, 679	1.2	3
30	Kinetically selective binding of single stranded RNA over DNA by a pyrrolidine-amide oligonucleotide mimic (POM). <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2001 , 20, 1169-72	1.4	3
29	Label-Free Technologies: Which Technique to Use and What to Watch Out for!. <i>Methods in Pharmacology and Toxicology</i> , 2015 , 3-15	1.1	3
28	Quantitation of Purines from Pigeon Guano and Implications for Cryptococcus neoformans Survival During Infection. <i>Mycopathologia</i> , 2019 , 184, 273-281	2.9	3

27	Clostridium difficile Infection: Current and Emerging Therapeutics. <i>Current Treatment Options in Infectious Diseases</i> , 2015 , 7, 317-334	1	2
26	Affinities and in-plane stress forces between glycopeptide antibiotics and biomimetic bacterial membranes. <i>Sensing and Bio-Sensing Research</i> , 2015 , 3, 24-30	3.3	2
25	The Revolution of Real-Time, Label-Free Biosensor Applications 2011 , 1-25		2
24	Akubio: label-free screening of molecular interactions using acoustic detection. <i>Drug Discovery Today</i> , 2002 , 7, S5-S7	8.8	2
23	The NLRP3 inhibitor MCC950 inhibits IL-1[production in PBMC from 19 patients with Cryopyrin-Associated Periodic Syndrome and in 2 patients with Schnitzler Syndrome. <i>Wellcome Open Research</i> ,5, 247	4.8	2
22	Antibiotic-derived molecular probes for bacterial imaging 2019,		2
21	Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds. <i>ACS Chemical Biology</i> , 2020 , 15, 3187-3196	4.9	2
20	Activity of Vancapticin MCC5145 against Methicillin-Resistant from Periprosthetic Joint Infection. <i>Antimicrobial Agents and Chemotherapy</i> , 2021 ,	5.9	2
19	Aim2 suppresses cigarette smoke-induced neutrophil recruitment, neutrophil caspase-1 activation and anti-Ly6G-mediated neutrophil depletion <i>Immunology and Cell Biology</i> , 2022 ,	5	2
18	Visualization of Bacterial Resistance using Fluorescent Antibiotic Probes. <i>Journal of Visualized Experiments</i> , 2020 ,	1.6	1
17	Dynamic and Label-Free Cell-Based Assays Using the xCELLigence System 2011 , 71-81		1
16	Use of Label-Free Detection Technologies in the Hit-to-Lead Process: Surface Optical Detection of Cellular Processes 2011 , 189-203		1
15	Cellular Screening for 7TM Receptors Using Label-Free Detection 2011 , 205-222		1
14	Sensor surfaces and receptor deposition110-142		1
13	Resonant Acoustic Profiling (RAP)Jand Rupture Event Scanning (REVS)J2006, 449-479		1
12	Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system <i>Nature Communications</i> , 2022 , 13, 260	17.4	1
11	Solid-Phase Synthesis of Octapeptin Lipopeptides. <i>Methods in Molecular Biology</i> , 2020 , 2103, 199-213	1.4	1
10	Resonant Acoustic Profiling (RAPDand Rupture Event Scanning (REVSD2006, 449		1

LIST OF PUBLICATIONS

9	Octapeptin C4 Induces Less Resistance and Novel Mutations in an Epidemic Carbapenemase-producingKlebsiella pneumoniaeST258 Clinical Isolate Compared to Polymyxins		1
8	Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-Lactamase-Producing Is Predominately Driven by Chloramphenicol. <i>ACS Infectious</i> <i>Diseases</i> , 2021 , 7, 1584-1595	5.5	1
7	Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages <i>PLoS Pathogens</i> , 2022 , 18, e1010166	7.6	O
6	Investigations into the membrane activity of arenicin antimicrobial peptide AA139 <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2022 , 130156	4	Ο
5	Biophysics/Label-Free Assays in Hit Discovery and Verification 2011 , 155-169		
4	A Novel Multiplex SPR Array for Rapid Screening and Affinity Determination of Monoclonal Antibodies: The ProteOn XPR36 Label Free System: Kinetic Screening of Monoclonal Antibodies 2011 , 141-154		
3	Harnessing Optical Label-Free on Microtiter Plates for Lead Finding: From Binding to Phenotypes 2011 , 171-187		
2	Interactions with membranes and membrane receptors159-178		
1	Nanoparticle sample preparation and mass spectrometry for rapid diagnosis of microbial infections. <i>Microbiology Australia</i> , 2013 , 34, 170	0.8	