Claas-Willem Visser

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8687652/claas-willem-visser-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	1,191	17	29
papers	citations	h-index	g-index
29	1,452 ext. citations	9.3	4.56
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
25	Continuous High-Throughput Fabrication of Architected Micromaterials via In-Air Photopolymerization. <i>Advanced Materials</i> , 2021 , 33, e2006336	24	3
24	In-Air Photopolymerization: Continuous High-Throughput Fabrication of Architected Micromaterials via In-Air Photopolymerization (Adv. Mater. 3/2021). <i>Advanced Materials</i> , 2021 , 33, 2170	0024	
23	Programmable Porous Polymers via Direct Bubble Writing with Surfactant-Free Inks. <i>ACS Applied Materials & Materia</i>	9.5	13
22	Architected Polymer Foams via Direct Bubble Writing. Advanced Materials, 2019, 31, e1904668	24	43
21	Laser-induced forward transfer of viscoplastic fluids. <i>Journal of Fluid Mechanics</i> , 2019 , 880, 497-513	3.7	8
20	Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry. <i>Soft Matter</i> , 2019 , 15, 8525-8531	3.6	11
19	In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. <i>Science Advances</i> , 2018 , 4, eaao1175	14.3	87
18	Ultrahigh-Throughput Production of Monodisperse and Multifunctional Janus Microparticles Using in-Air Microfluidics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 23433-23438	9.5	31
17	Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape. <i>Small</i> , 2017 , 13, 1603711	11	36
16	Printing Functional 3D Microdevices by Laser-Induced Forward Transfer. <i>Small</i> , 2017 , 13, 1602553	11	46
15	Oblique drop impact onto a deep liquid pool. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	18
14	On the spreading of impacting drops. <i>Journal of Fluid Mechanics</i> , 2016 , 805, 636-655	3.7	139
13	Continuous-wave laser generated jets for needle free applications. <i>Biomicrofluidics</i> , 2016 , 10, 014104	3.2	16
12	Role of natural convection in the dissolution of sessile droplets. <i>Journal of Fluid Mechanics</i> , 2016 , 794, 45-67	3.7	32
11	Impact-driven ejection of micro metal droplets on-demand. <i>International Journal of Machine Tools and Manufacture</i> , 2016 , 106, 67-74	9.4	23
10	Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. <i>Soft Matter</i> , 2015 , 11, 1708-22	3.6	127
9	Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer. <i>Advanced Materials</i> , 2015 , 27, 4087-92	24	154

LIST OF PUBLICATIONS

8	Optimizing cell viability in droplet-based cell deposition. <i>Scientific Reports</i> , 2015 , 5, 11304	4.9	72
7	3D Printing: Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer (Adv. Mater. 27/2015). <i>Advanced Materials</i> , 2015 , 27, 4103-4103	24	4
6	Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals. <i>Physical Review Applied</i> , 2015 , 3,	4.3	32
5	Drop Shaping by Laser-Pulse Impact. <i>Physical Review Applied</i> , 2015 , 3,	4.3	52
4	Quantifying cell adhesion through impingement of a controlled microjet. <i>Biophysical Journal</i> , 2015 , 108, 23-31	2.9	10
3	Control of slippage with tunable bubble mattresses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 8422-6	11.5	133
2	Microdroplet impact at very high velocity. <i>Soft Matter</i> , 2012 , 8, 10732	3.6	56
1	Highly Focused Supersonic Microjets. <i>Physical Review X</i> , 2012 , 2,	9.1	37