Anja Maria Wagemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8687219/publications.pdf

Version: 2024-02-01

18 papers	370 citations	14 h-index	939365 18 g-index
18	18	18	372 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Investigation of local and temporal interfacial shear stress distribution during membrane emulsification. Canadian Journal of Chemical Engineering, 2022, 100, 1061-1078.	0.9	6
2	Conformational state and charge determine the interfacial film formation and film stability of \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 2021, 114, 106561.	5.6	19
3	Structure and adsorption behavior of high hydrostatic pressure-treated \hat{l}^2 -lactoglobulin. Journal of Colloid and Interface Science, 2021, 596, 173-183.	5.0	18
4	Interfacial film formation and film stability of high hydrostatic pressure-treated \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 2021, 119, 106746.	5.6	20
5	FTIR analysis of \hat{I}^2 -lactoglobulin at the oil/water-interface. Food Chemistry, 2020, 302, 125349.	4.2	28
6	Osmometric and viscometric study of levan, \hat{l}^2 -lactoglobulin and their mixtures. Food Hydrocolloids, 2020, 101, 105580.	5.6	12
7	Molecular weight dependent structure of the exopolysaccharide levan. International Journal of Biological Macromolecules, 2020, 161, 398-405.	3.6	21
8	A Comprehensive Brownian Dynamics Approach for the Determination of Non-ideality Parameters from Analytical Ultracentrifugation. Langmuir, 2019, 35, 11491-11502.	1.6	6
9	Rheology of common uncharged exopolysaccharides for food applications. Current Opinion in Food Science, 2019, 27, 1-7.	4.1	27
10	Conformational state and charge determine the interfacial stabilization process of beta-lactoglobulin at preoccupied interfaces. Journal of Colloid and Interface Science, 2019, 536, 300-309.	5.0	33
11	Modification of extruded chicken collagen films by addition of co-gelling protein and sodium chloride. Journal of Food Engineering, 2017, 207, 46-55.	2.7	20
12	Extension of the Vane Pumpâ€Grinder Technology to Manufacture Finely Dispersed Meat Batters. Journal of Food Science, 2016, 81, E618-E626.	1.5	2
13	Modulation of extruded collagen films by the addition of co-gelling proteins. Journal of Food Engineering, 2016, 171, 164-173.	2.7	20
14	Microstructure and physical–chemical properties of chicken collagen. Food Structure, 2016, 7, 29-37.	2.3	30
15	Modulation of collagen by addition of Hofmeister salts. International Journal of Biological Macromolecules, 2015, 79, 518-526.	3.6	19
16	Modulation of the rheological properties and microstructure ofÂcollagen by addition of co-gelling proteins. Food Hydrocolloids, 2015, 49, 118-126.	5.6	36
17	Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability. Colloids and Surfaces B: Biointerfaces, 2015, 135, 525-532.	2.5	14
18	Collagen entanglement influenced by the addition of acids. European Polymer Journal, 2014, 58, 144-156.	2.6	39