
Sang Yoon Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatially isolated neutral excitons <i>via</i> clusters on trilayer MoS ₂ . Nanoscale, 2022, 14, 4304-4311.	2.8	2
2	Enhanced Electrical Properties of Metalâ€Organic Chemical Vapor Depositionâ€Grown MoS ₂ Thin Films through Oxygenâ€Assisted Defect Control. Advanced Electronic Materials, 2022, 8, .	2.6	4
3	Highly Reliable Synaptic Cell Array Based on Organic–Inorganic Hybrid Bilayer Stack toward Precise Offline Learning. Advanced Intelligent Systems, 2022, 4, .	3.3	4
4	Wafer-Scale Uniform Growth of an Atomically Thin MoS ₂ Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 50497-50504.	4.0	11
5	Conductive-bridging random-access memories for emerging neuromorphic computing. Nanoscale, 2020, 12, 14339-14368.	2.8	46
6	Lowâ€Thermalâ€Budget Doping: Lowâ€Thermalâ€Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boronâ€Doped Reduced Graphene Oxide (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070039.	5.6	0
7	Largeâ€Scale, Lowâ€Power Nonvolatile Memory Based on Fewâ€Layer MoS ₂ and Ultrathin Polymer Dielectrics. Advanced Electronic Materials, 2019, 5, 1800688.	2.6	23
8	Improved Electrical Contact Properties of MoS ₂ â€Graphene Lateral Heterostructure. Advanced Functional Materials, 2019, 29, 1807550.	7.8	44
9	Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. Nano Letters, 2019, 19, 839-849.	4.5	139
10	60â€3: Highâ€Performance MoS ₂ Thinâ€Film Transistors for Flexible OLED display. Digest of Technical Papers SID International Symposium, 2018, 49, 797-799.	0.1	2
11	Largeâ€Area CVDâ€Grown MoS ₂ Driver Circuit Array for Flexible Organic Lightâ€Emitting Diode Display. Advanced Electronic Materials, 2018, 4, 1800251.	2.6	39
12	Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics. Nano Research, 2017, 10, 2459-2470.	5.8	39
13	Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 2017, 5, 14950-14968.	5.2	38
14	Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Research, 2017, 10, 255-262.	5.8	92
15	Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2016, 8, 12951-12958.	4.0	66
16	Metal-Etching-Free Direct Delamination and Transfer of Single-Layer Graphene with a High Degree of Freedom. Small, 2015, 11, 175-181.	5.2	57
17	Sensors: Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 2-2.	3.9	3
18	Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia. Advanced Healthcare Materials, 2014, 3, 59-68.	3.9	105

SANG YOON YANG

#	Article	IF	CITATIONS
19	Plastic neuronal probes for implantation in cortical and subcortical areas of the rat brain. International Journal of Nanotechnology, 2012, 9, 517.	0.1	8
20	Geckoâ€Inspired Controllable Adhesive Structures Applied to Micromanipulation. Advanced Functional Materials, 2012, 22, 1246-1254.	7.8	145
21	Elastomer Surfaces with Directionally Dependent Adhesion Strength and Their Use in Transfer Printing with Continuous Rollâ€ŧoâ€Roll Applications. Advanced Materials, 2012, 24, 2117-2122.	11.1	115
22	Detection of Transmitter Release from Single Living Cells Using Conducting Polymer Microelectrodes. Advanced Materials, 2011, 23, H184-8.	11.1	71
23	Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors. Advanced Materials, 2010, 22, 1012-1016.	11.1	168
24	Reducing the contact resistance in organic thin-film transistors by introducing a PEDOT:PSS hole-injection layer. Organic Electronics, 2008, 9, 864-868.	1.4	79
25	Lower hole-injection barrier between pentacene and a 1-hexadecanethiol-modified gold substrate with a lowered work function. Organic Electronics, 2008, 9, 21-29.	1.4	44
26	Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups. Organic Electronics, 2008, 9, 673-677.	1.4	85
27	Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors. Organic Electronics, 2007, 8, 336-342.	1.4	57
28	Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric. Applied Physics Letters, 2006, 89, 183516.	1.5	90
29	Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics. Applied Physics Letters, 2006, 88, 173507.	1.5	123
30	Enhanced Electrical Percolation Due to Interconnection of Three-Dimensional Pentacene Islands in Thin Films on Low Surface Energy Polyimide Gate Dielectrics. Journal of Physical Chemistry B, 2006, 110, 20302-20307.	1.2	22
31	Low-voltage organic transistors on a polymer substrate with an aluminum foil gate fabricated by a laminating and electropolishing process. Applied Physics Letters, 2006, 89, 153508.	1.5	27