
Manuel Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686388/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors. Dalton Transactions, 2022, 51, 4386-4393.	3.3	8
2	Photocatalytic Activity in the In-Flow Degradation of NO on Porous TiO2–Coated Glasses from Hybrid Inorganic–Organic Thin Films Prepared by a Combined ALD/MLD Deposition Strategy. Coatings, 2022, 12, 488.	2.6	1
3	Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorganic Chemistry, 2021, 60, 15497-15508.	4.0	11
4	Advances in Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation. Catalysts, 2021, 11, 1288.	3.5	15
5	Iridium-Catalyzed Silylation. Topics in Organometallic Chemistry, 2020, , 227-270.	0.7	0
6	lridium catalysts featuring amine-containing ligands for the dehydrogenation of formic acid. Journal of Organometallic Chemistry, 2020, 916, 121259.	1.8	3
7	Non-classical hydrosilane mediated reductions promoted by transition metal complexes. Coordination Chemistry Reviews, 2019, 386, 240-266.	18.8	44
8	Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation. European Journal of Inorganic Chemistry, 2018, 2018, 2125-2138.	2.0	56
9	A leap forward in iridium–NHC catalysis: new horizons and mechanistic insights. Chemical Society Reviews, 2018, 47, 2772-2808.	38.1	112
10	A highly efficient Ir-catalyst for the solventless dehydrogenation of formic acid: the key role of an N-heterocyclic olefin. Green Chemistry, 2018, 20, 4875-4879.	9.0	29
11	Impact of Protic Ligands in the Ir-Catalyzed Dehydrogenation of Formic Acid in Water. Organometallics, 2018, 37, 3611-3618.	2.3	18
12	Synthesis and Oxidation of a Paddlewheelâ€Shaped Rhodium/Antimony Complex Featuring Pyridineâ€2â€Thiolate Ligands. Chemistry - A European Journal, 2017, 23, 3447-3454.	3.3	10
13	From Imidazole toward Imidazolium Salts and N-Heterocyclic Carbene Ligands: Electronic and Geometrical Redistribution. ACS Omega, 2017, 2, 1392-1399.	3.5	26
14	A well-defined NHC–Ir(iii) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights. Chemical Science, 2017, 8, 4811-4822.	7.4	44
15	Efficient preparation of carbamates by Rh-catalysed oxidative carbonylation: unveiling the role of the oxidant. Chemical Communications, 2017, 53, 404-407.	4.1	15
16	Hydrosilylation of Terminal Alkynes Catalyzed by a ONO-Pincer Iridium(III) Hydride Compound: Mechanistic Insights into the Hydrosilylation and Dehydrogenative Silylation Catalysis. Organometallics, 2016, 35, 2410-2422.	2.3	52
17	Iridium(III) Complexes Bearing Chelating Bis-NHC Ligands and Their Application in the Catalytic Reduction of Imines. European Journal of Inorganic Chemistry, 2016, 2016, 4598-4603.	2.0	25
18	N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions. Dalton Transactions, 2016, 45, 12835-12845.	3.3	37

MANUEL IGLESIAS

#	Article	IF	CITATIONS
19	Dimethylphosphinate bridged binuclear Rh(i) catalysts for the alkoxycarbonylation of aromatic C–H bonds. Dalton Transactions, 2016, 45, 16955-16965.	3.3	6
20	Experimental and Computational Studies on the Reactivity and Binding Mode of Thiophene with N-Heterocyclic Carbene Iridium Complexes. Organometallics, 2016, 35, 569-578.	2.3	4
21	Binuclear Iridium Complexes in Catalysis. Topics in Organometallic Chemistry, 2015, , 31-58.	0.7	6
22	Efficient Rhodium atalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines. Chemistry - A European Journal, 2015, 21, 17701-17707.	3.3	27
23	Direct Xâ€Ray Scattering Evidence for Metal–Metal Interactions in Solution at the Molecular Level. Angewandte Chemie - International Edition, 2015, 54, 12762-12766.	13.8	20
24	An Insight into Transfer Hydrogenation Reactions Catalysed by Iridium(III) Bisâ€Nâ€heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2015, 2015, 4388-4395.	2.0	17
25	Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes: its role in the catalytic hydrosilylation of ketones. Catalysis Science and Technology, 2015, 5, 1878-1887.	4.1	9
26	Catalytic Hydrodechlorination of Benzyl Chloride Promoted by Rh– <i>N</i> â€heterocyclic Carbene Catalysts. ChemSusChem, 2015, 8, 495-503.	6.8	15
27	Hydrolysis and Methanolysis of Silanes Catalyzed by Iridium(III) Bis-N-Heterocyclic Carbene Complexes: Influence of the Wingtip Groups. Organometallics, 2015, 34, 2378-2385.	2.3	51
28	Preferential αâ€Hydrosilylation of Terminal Alkynes by Bisâ€Nâ€Heterocyclic Carbene Rhodium(III) Catalysts. Advanced Synthesis and Catalysis, 2015, 357, 350-354.	4.3	37
29	Tuning PCP–Ir complexes: the impact of an N-heterocyclic olefin. Chemical Communications, 2015, 51, 12431-12434.	4.1	37
30	A bimetallic iridium(ii) catalyst: [{Ir(IDipp)(H)}2][BF4]2 (IDipp =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 302 Td (1	,3-þis(2,6- 4.1	diisopropylpł 21
31	Outer‧phere Ionic Hydrosilylation Catalysis. ChemCatChem, 2014, 6, 2486-2489.	3.7	62
32	Heterogeneous catalysts based on supported Rh–NHC complexes: synthesis of high molecular weight poly(silyl ether)s by catalytic hydrosilylation. Catalysis Science and Technology, 2014, 4, 62-70.	4.1	37
33	Selective CH Bond Functionalization of 2â€(2â€Thienyl)pyridine by a Rhodium Nâ€Heterocyclic Carbene Catalyst. ChemCatChem, 2014, 6, 3192-3199.	3.7	28
34	Argentophilicity as Essential Driving Force for a Dynamic Cation–Cation Host–Guest System: [Ag(acetonitrile) ₂] ⁺ âŠ,[Ag ₂ (bis-NHC) ₂] ²⁺ (NHC = N-Heterocyclic Carbene). Inorganic Chemistry, 2014, 53, 10654-10659.	4.0	31
35	Bond Activation and Catalysis. , 2013, , 399-432.		4

CO₂ Activation and Catalysis Driven by Iridium Complexes. ChemCatChem, 2013, 5, 3481-3494. 3.7 53

MANUEL IGLESIAS

#	Article	IF	CITATIONS
37	Synthesis of Poly(silyl ether)s by Rhodium(I)–NHC Catalyzed Hydrosilylation: Homogeneous versus Heterogeneous Catalysis. ChemCatChem, 2013, 5, 1133-1141.	3.7	34
38	An Alternative Mechanistic Paradigm for the βâ€ <i>Z</i> Hydrosilylation of Terminal Alkynes: The Role of Acetone as a Silane Shuttle. Chemistry - A European Journal, 2013, 19, 17559-17566.	3.3	81
39	A synthon for a 14-electron Ir(iii) species: catalyst for highly selective β-(Z) hydrosilylation of terminal alkynes. Chemical Communications, 2012, 48, 9480.	4.1	60
40	Effective Fixation of CO ₂ by Iridiumâ€Catalyzed Hydrosilylation. Angewandte Chemie - International Edition, 2012, 51, 12824-12827.	13.8	130
41	Abnormal NHC Palladium Complexes: Synthesis, Structure, and Reactivity. Current Organic Chemistry, 2011, 15, 3325-3336.	1.6	48
42	Expandedâ€Ring and Backboneâ€Functionalised Nâ€Heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2010, 2010, 1604-1607.	2.0	24
43	Donor-Functionalised Expanded Ring N-Heterocyclic Carbenes: Highly Effective Ligands in Ir-Catalysed Transfer Hydrogenation. European Journal of Inorganic Chemistry, 2010, 2010, 5426-5431.	2.0	61
44	Polyoxometalateâ€Based Nâ€Heterocyclic Carbene (NHC) Complexes for Palladiumâ€Mediated CC Coupling and Chloroaryl Dehalogenation Catalysis. Chemistry - A European Journal, 2010, 16, 10662-10666.	3.3	55
45	A new, mild one-pot synthesis of iodinated heterocycles as suitable precursors for N-heterocyclic carbene complexes. Tetrahedron Letters, 2010, 51, 5423-5425.	1.4	15
46	Expanding the family of mesoionic complexes: donor properties and catalytic impact of palladated isoxazolylidenes. Dalton Transactions, 2010, 39, 5213.	3.3	71
47	Synthesis and Structural Features of Rhodium Complexes of Expanded Ring Nâ€Heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2009, 2009, 1913-1919.	2.0	72
48	Expanded ring and functionalised expanded ring N-heterocyclic carbenes as ligands in catalysis. Dalton Transactions, 2009, , 7099.	3.3	93
49	Novel Expanded Ring N-Heterocyclic Carbenes: Free Carbenes, Silver Complexes, And Structures. Organometallics, 2008, 27, 3279-3289.	2.3	231
50	First Examples of Diazepanylidene Carbenes and Their Late-Transition-Metal Complexes. Organometallics, 2007, 26, 4800-4809.	2.3	121
51	Preparation and characterization of chloro- and polyhydride complexes of rhenium: Variable-temperature NMR spectroscopy and protonation studies. Journal of Organometallic Chemistry, 2005, 690, 4899-4907.	1.8	8