
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686361/publications.pdf Version: 2024-02-01

MIDZA COKOLA

#	Article	IF	CITATIONS
1	Transformation of Carbon Dioxide with Homogeneous Transitionâ€Metal Catalysts: A Molecular Solution to a Global Challenge?. Angewandte Chemie - International Edition, 2011, 50, 8510-8537.	13.8	1,439
2	Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Organocatalysts. ChemSusChem, 2015, 8, 2436-2454.	6.8	410
3	Chemistry of Iron <i>N</i> -Heterocyclic Carbene Complexes: Syntheses, Structures, Reactivities, and Catalytic Applications. Chemical Reviews, 2014, 114, 5215-5272.	47.7	354
4	Ruthenium Nanoparticles inside Porous [Zn ₄ O(bdc) ₃] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 2008, 130, 6119-6130.	13.7	348
5	Transition Metal Chemistry of Low Valent Group 13 Organyls. European Journal of Inorganic Chemistry, 2004, 2004, 4161-4176.	2.0	190
6	From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal–organic frameworks. Dalton Transactions, 2011, 40, 6834.	3.3	162
7	Cycloaddition of Carbon Dioxide and Epoxides using Pentaerythritol and Halides as Dual Catalyst System. ChemSusChem, 2014, 7, 1357-1360.	6.8	151
8	Hydroxyâ€Functionalized Imidazolium Bromides as Catalysts for the Cycloaddition of CO ₂ and Epoxides to Cyclic Carbonates. ChemCatChem, 2015, 7, 94-98.	3.7	132
9	AlCp* as a Directing Ligand: Cĩ٤¿H and Siĩ٤¿H Bond Activation at the Reactive Intermediate[Ni(AlCp*)3]. Angewandte Chemie - International Edition, 2004, 43, 2299-2302.	13.8	119
10	Epoxidation of olefins with homogeneous catalysts – quo vadis?. Catalysis Science and Technology, 2013, 3, 552-561.	4.1	114
11	Synthesis of Cyclic Carbonates from Epoxides and CO ₂ under Mild Conditions Using a Simple, Highly Efficient Niobiumâ€Based Catalyst. ChemCatChem, 2013, 5, 1321-1324.	3.7	113
12	Recent advances in oxidation catalysis using ionic liquids as solvents. Coordination Chemistry Reviews, 2011, 255, 1518-1540.	18.8	111
13	Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9596-9600.	13.8	100
14	Cycloaddition of CO2 and epoxides catalyzed by imidazolium bromides under mild conditions: influence of the cation on catalyst activity. Catalysis Science and Technology, 2014, 4, 1749.	4.1	90
15	Catalytic hydroxylation of benzene and toluene by an iron complex bearing a chelating di-pyridyl-di-NHC ligand. Chemical Communications, 2014, 50, 11454-11457.	4.1	90
16	Historical landmarks of the application of molecular transition metal catalysts for olefin epoxidation. Journal of Organometallic Chemistry, 2014, 751, 25-32.	1.8	86
17	CH Activated Isomers of [M(AlCp*)5] (M=Fe, Ru). Angewandte Chemie - International Edition, 2005, 44, 2943-2946.	13.8	77
18	Cleavage of CO Bonds in Lignin Model Compounds Catalyzed by Methyldioxorhenium in Homogeneous Phase. ChemSusChem, 2014, 7, 429-434.	6.8	69

#	Article	IF	CITATIONS
19	Dynamics of the NbCl ₅ â€Catalyzed Cycloaddition of Propylene Oxide and CO ₂ : Assessing the Dual Role of the Nucleophilic Coâ€Catalysts. Chemistry - A European Journal, 2014, 20, 11870-11882.	3.3	68
20	Synthesis and Characterization of an Iron Complex Bearing a Cyclic Tetra-N-heterocyclic Carbene Ligand: An Artifical Heme Analogue?. Inorganic Chemistry, 2015, 54, 3797-3804.	4.0	67
21	[M(GaCp*)4] (M = Pd, Pt) as Building Blocks for Dimeric Homoleptic Cluster Compounds of the Type [MPt(GaCp*)5]. Organometallics, 2003, 22, 2705-2710.	2.3	66
22	Synthesis and Characterization of Novel Iron(II) Complexes with Tetradentate Bis(N-heterocyclic) Tj ETQq0 0 0 r	gBT /Overlo 2.3	ock 10 Tf 50 (
23	Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis. ChemSusChem, 2015, 8, 4056-4063.	6.8	62
24	Novel RhCp*/GaCp* and RhCp*/InCp* cluster complexes. Dalton Transactions, 2005, , 55.	3.3	61
25	Gold(I) Complexes with "Normal―1,2,3-Triazolylidene Ligands: Synthesis and Catalytic Properties. Organometallics, 2013, 32, 3376-3384.	2.3	61
26	Recycling CO ₂ ? Computational Considerations of the Activation of CO ₂ with Homogeneous Transition Metal Catalysts. ChemCatChem, 2012, 4, 1703-1712.	3.7	60
27	Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide. ChemSusChem, 2011, 4, 1275-1279.	6.8	59
28	Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide. Catalysis Science and Technology, 2014, 4, 1638-1643.	4.1	59
29	Inorganic/organometallic catalysts and initiators involving weakly coordinating anions for isobutene polymerisation. Coordination Chemistry Reviews, 2011, 255, 1541-1557.	18.8	58
30	Insertion reactions of GaCp*, InCp* and In[C(SiMe3)3] into the Ru–Cl bonds of [(p-cymene)RullCl2]2and [Cp*RullCl]4. Dalton Transactions, 2005, , 44-54.	3.3	57
31	Dual Site Lewisâ€Acid Metalâ€Organic Framework Catalysts for CO ₂ Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem, 2018, 10, 3506-3512.	3.7	55
32	Olefin Epoxidation with a New Class of <i>Ansa</i> â€Molybdenum Catalysts in Ionic Liquids. ChemSusChem, 2010, 3, 559-562.	6.8	54
33	Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Waterâ€Soluble <i>N</i> â€Heterocyclic Carbene Complexes of Late Transition Metals. ChemSusChem, 2016, 9, 2849-2854.	6.8	53
34	Synthesis and Characterization of Highly Water Soluble Ruthenium(II) and Osmium(II) Complexes Bearing Chelating Sulfonated N-Heterocyclic Carbene Ligands. Organometallics, 2013, 32, 741-744.	2.3	51
35	Epoxidation of Olefins Catalyzed by a Molecular Iron <i>N</i> â€Heterocyclic Carbene Complex: Influence of Reaction Parameters on the Catalytic Activity. ChemCatChem, 2014, 6, 1882-1886.	3.7	51
36	Nucleophile-directed selectivity towards linear carbonates in the niobium pentaethoxide-catalysed cycloaddition of CO ₂ and propylene oxide. Catalysis Science and Technology, 2014, 4, 1534-1538.	4.1	49

#	Article	IF	CITATIONS
37	A colloidal ZnO/Cu nanocatalyst for methanol synthesis. Chemical Communications, 2006, , 2498-2500.	4.1	48
38	Activation of Hydrogen Peroxide by Ionic Liquids: Mechanistic Studies and Application in the Epoxidation of Olefins. Chemistry - A European Journal, 2013, 19, 5972-5979.	3.3	47
39	Generation and Stabilization of Small Platinum Clusters Pt _{12±<i>x</i>} Inside a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13962-13969.	13.7	47
40	Nano-brass colloids: synthesis by co-hydrogenolysis of [CpCu(PMe3)] with [ZnCp*2] and investigation of the oxidation behaviour of α/β-CuZn nanoparticles. Journal of Materials Chemistry, 2006, 16, 2420-2428.	6.7	46
41	η5,η1-Coordinated cyclopentadienyl transition metal complexes featuring σ-metal–carbon ansa bridges. Coordination Chemistry Reviews, 2010, 254, 608-634.	18.8	46
42	On the Concept of Hemilability: Insights into a Donor-Functionalized Iridium(I) NHC Motif and Its Impact on Reactivity. Inorganic Chemistry, 2014, 53, 12767-12777.	4.0	46
43	Structural diversity of late transition metal complexes with flexible tetra-NHC ligands. Dalton Transactions, 2015, 44, 18329-18339.	3.3	45
44	N-Heterocyclic carbenes via abstraction of ammonia: â€~normal' carbenes with â€~abnormal' character. Chemical Communications, 2012, 48, 3857.	4.1	43
45	Binding of molecular oxygen by an artificial heme analogue: investigation on the formation of an Fe–tetracarbene superoxo complex. Dalton Transactions, 2016, 45, 6449-6455.	3.3	43
46	Exploitation of Intrinsic Confinement Effects of MOFs in Catalysis. ChemCatChem, 2021, 13, 1683-1691.	3.7	43
47	Substituentâ€Free Gallium by Hydrogenolysis of Coordinated GaCp*: Synthesis and Structure of Highly Fluxional [Ru ₂ (Ga)(GaCp*) ₇ (H) ₃]. Angewandte Chemie - International Edition, 2009, 48, 3872-3876.	13.8	42
48	Reduction of carbon dioxide and organic carbonyls by hydrosilanes catalysed by the perrhenate anion. Catalysis Science and Technology, 2017, 7, 2838-2845.	4.1	42
49	Substantial Turnover Frequency Enhancement of MOF Catalysts by Crystallite Downsizing Combined with Surface Anchoring. ACS Catalysis, 2020, 10, 3203-3211.	11.2	41
50	Insertion of organoindium carbenoids into rhodium halide bonds: revisiting a classic type of transition metal–group 13 metal bond formation. Chemical Communications, 2003, , 1066-1067.	4.1	40
51	Liberation of methyl acrylate from metallalactone complexes via M–O ring opening (M = Ni, Pd) with methylation agents. New Journal of Chemistry, 2013, 37, 3512.	2.8	40
52	Application of Open Chain Tetraimidazolium Salts as Precursors for the Synthesis of Silver Tetra(NHC) Complexes. Inorganic Chemistry, 2015, 54, 415-417.	4.0	39
53	Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: the effect of pore size on catalyst activity and recycling. Dalton Transactions, 2015, 44, 15976-15983.	3.3	38
54	Facile and scalable preparation of 2-imidazolylpyridines. Tetrahedron Letters, 2013, 54, 3384-3387.	1.4	37

#	Article	IF	CITATIONS
55	Nanometallurgy of Colloidal Aluminides: Soft Chemical Synthesis of CuAl2and α/β-CuAl Colloids by Co-Hydrogenolysis of (AlCp*)4with [CpCu(PMe3)]. Chemistry of Materials, 2006, 18, 1634-1642.	6.7	35
56	Ligand properties of Cp*Ga: new examples of Mo–Ga and W–Ga complexes. Journal of Organometallic Chemistry, 2003, 684, 277-286.	1.8	34
57	Exploring the Scope of a Novel Ligand Class: Synthesis and Catalytic Examination of Metal Complexes with †Normal' 1,2,3-Triazolylidene Ligands. Inorganic Chemistry, 2013, 52, 6142-6152.	4.0	33
58	Synthesis and Catalytic Applications of <i>ansa</i> Compounds with Cycloalkyl Moieties as Bridging Units: A Comparative Study. Advanced Synthesis and Catalysis, 2010, 352, 547-556.	4.3	32
59	Epoxidation of α-pinene catalyzed by methyltrioxorhenium(VII): Influence of additives, oxidants and solvents. Journal of Molecular Catalysis A, 2011, 340, 9-14.	4.8	32
60	Iron-catalyzed oxidation of unreactive C H bonds: Utilizing bio-inspired axial ligand modification to increase catalyst stability. Journal of Catalysis, 2015, 331, 147-153.	6.2	32
61	Synthesis and characterization of novel cyclopentadienyl molybdenum imidazo[1,5-a]pyridine-3-ylidene complexes and their application in olefin epoxidation catalysis. Journal of Catalysis, 2014, 319, 119-126.	6.2	31
62	Fluorinated Solvents in Methyltrioxorhenium-Catalyzed Olefin Epoxidations. European Journal of Inorganic Chemistry, 2012, 2012, 3235-3239.	2.0	30
63	Imidazolium perrhenate ionic liquids as efficient catalysts for the selective oxidation of sulfides to sulfones. Journal of Organometallic Chemistry, 2013, 744, 108-112.	1.8	30
64	Defect Engineering of Copper Paddlewheel-Based Metal–Organic Frameworks of Type NOTT-100: Implementing Truncated Linkers and Its Effect on Catalytic Properties. ACS Applied Materials & Interfaces, 2020, 12, 37993-38002.	8.0	30
65	Copper(ii) complexes incorporating poly/perfluorinated alkoxyaluminate-type weakly coordinating anions: Syntheses, characterization and catalytic application in stereoselective olefin aziridination. Dalton Transactions, 2011, 40, 5746.	3.3	29
66	Oxidation of sulfides to sulfoxides mediated by ionic liquids. RSC Advances, 2012, 2, 8416.	3.6	29
67	Making Oxidation Potentials Predictable: Coordination of Additives Applied to the Electronic Fine Tuning of an Iron(II) Complex. Inorganic Chemistry, 2014, 53, 11573-11583.	4.0	29
68	Organometallic Synthesis of Colloidal α-/β-NiAl Nanoparticles and Selective Aluminum Oxidation in α-Ni1-xAlx Nanoalloys. Chemistry of Materials, 2007, 19, 5721-5733.	6.7	28
69	Selective epoxidation of (+)-limonene employing methyltrioxorhenium as catalyst. Journal of Molecular Catalysis A, 2012, 358, 159-165.	4.8	25
70	DFT studies on the reaction pathway of the catalytic olefin epoxidation with CpMoCF3 dioxo and oxo–peroxo complexes. Journal of Organometallic Chemistry, 2013, 748, 36-45.	1.8	25
71	Olefin Epoxidation in Aqueous Phase Using Ionicâ€Liquid Catalysts. ChemSusChem, 2016, 9, 1773-1776.	6.8	25
72	Synthesis of nitrile coordinated Lewis acids Al(OC(CF3)2R)3 and their application in catalytic epoxide ring-opening reactions. Applied Catalysis A: General, 2010, 384, 171-176.	4.3	24

#	Article	IF	CITATIONS
73	NHC Versus Pyridine: How "Teeth―Change the Redox Behavior of Iron(II) Complexes. Organometallics, 2015, 34, 5155-5166.	2.3	23
74	Iron(II) N-heterocyclic carbene complexes in catalytic one-pot Wittig reactions: Mechanistic insights. Journal of Catalysis, 2016, 344, 213-220.	6.2	23
75	Deoxydehydration of vicinal diols and polyols catalyzed by pyridinium perrhenate salts. Catalysis Science and Technology, 2017, 7, 5644-5649.	4.1	23
76	Network topology and cavity confinement-controlled diastereoselectivity in cyclopropanation reactions catalyzed by porphyrin-based MOFs. Catalysis Science and Technology, 2019, 9, 6452-6459.	4.1	22
77	Synthesis and application of molybdenum (III) complexes bearing weakly coordinating anions as catalysts of isobutylene polymerization. Journal of Polymer Science Part A, 2010, 48, 3775-3786.	2.3	21
78	Catalytic olefin epoxidation with a fluorinated organomolybdenum complex. Journal of Molecular Catalysis A, 2012, 363-364, 237-244.	4.8	21
79	Halide substituted Schiff-bases: Different activities in methyltrioxorhenium(VII) catalyzed epoxidation via different substitution patterns. Journal of Organometallic Chemistry, 2012, 701, 51-55.	1.8	20
80	Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs. Chemical Communications, 2015, 51, 3399-3402.	4.1	20
81	Defect engineering: an effective tool for enhancing the catalytic performance of copper-MOFs for the click reaction and the A ³ coupling. Catalysis Science and Technology, 2021, 11, 2396-2402.	4.1	20
82	Organometallic Access to IntermetallicÎ,â€CuE2(E = Al, Ga) and Cu1–xAlxPhases. European Journal of Inorganic Chemistry, 2008, 2008, 3330-3339.	2.0	19
83	Homogeneous Catalytic Olefin Epoxidation with Molybdenum Complexes. Advances in Inorganic Chemistry, 2013, 65, 33-83.	1.0	18
84	Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability. Journal of Colloid and Interface Science, 2016, 478, 72-80.	9.4	17
85	Chromophoric Lewis Base Adducts of Methyltrioxorhenium: Synthesis, Catalysis and Photochemistry. European Journal of Inorganic Chemistry, 2010, 2010, 4083-4090.	2.0	16
86	Dicarboxylate-bridged (Mo2)n (n = 2, 3, 4) paddle-wheel complexes: potential intermediate building blocks for metal–organic frameworks. Dalton Transactions, 2011, 40, 11490.	3.3	16
87	Formation of Highly Strained Nâ€Heterocycles via Decomposition of Iron Nâ€Heterocyclic Carbene Complexes: The Value of Labile FeC Bonds. Chemistry - A European Journal, 2015, 21, 17860-17869.	3.3	16
88	Preliminary toxicity and ecotoxicity assessment of methyltrioxorhenium and its derivatives. Green Chemistry, 2015, 17, 1136-1144.	9.0	16
89	lonic Liquids as Micellar Agents in Perrhenateâ€catalysed Olefin Epoxidation. ChemistrySelect, 2017, 2, 11891-11898.	1.5	16
90	Organometallic Synthesis of βâ€CoAl Nanoparticles and βâ€CoAl/Al Nanoparticles and Their Behaviour upon Air Exposure. European Journal of Inorganic Chemistry, 2010, 2010, 1599-1603.	2.0	15

#	Article	IF	CITATIONS
91	Oxidation Reactions Catalyzed by Polyoxomolybdate Salts. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 587-597.	0.7	15
92	Supramolecular concepts for the biphasic epoxidation of olefins using aqueous hydrogen peroxide. Green Chemistry, 2021, 23, 708-722.	9.0	14
93	Vibrational spectroscopic study of SiO2-based nanotubes. Vibrational Spectroscopy, 2013, 66, 104-118.	2.2	13

Synthesis, Characterization, and Reactivity of Furan- and Thiophene-Functionalized Bis(N-heterocyclic) Tj ETQq000 rgBT /Overlock 10 T

<i>,</i>			10
95	Influence of structural and electronic properties of organomolybdenum(ii) complexes of the type [CpMo(CO)3R] and [CpMo(O2)(O)R] (R = Cl, CH3, CF3) on the catalytic olefin epoxidation. Catalysis Science and Technology, 2015, 5, 2282-2289.	4.1	13
96	Catalytically active perrhenate based ionic liquids: a preliminary ecotoxicity and biodegradability assessment. New Journal of Chemistry, 2015, 39, 5431-5436.	2.8	13
97	Ionic liquid surfactants as multitasking micellar catalysts for epoxidations in water. Catalysis Science and Technology, 2020, 10, 4448-4457.	4.1	13
98	Rutheniumâ€Catalyzed Hydrogenation of Oxygenâ€Functionalized Aromatic Compounds in Water. ChemCatChem, 2013, 5, 3241-3248.	3.7	12
99	Synthesis and Characterization of Dimolybdenum(II) Complexes Connected by Carboxylate Linkers. Organometallics, 2013, 32, 6004-6011.	2.3	12
100	Xylyltrioxorhenium – the first arylrhenium(vii) oxide applicable as an olefin epoxidation catalyst. Catalysis Science and Technology, 2013, 3, 388-393.	4.1	12
101	Epoxidation of Olefins Catalyzed by Polyoxomolybdates Formed in-situ in Ionic Liquids. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 1138-1142.	0.7	12
102	Isocyanide substitution reactions at the trans labile sites of an iron(<scp>ii</scp>) N-heterocyclic carbene complex. RSC Advances, 2015, 5, 85486-85493.	3.6	12
103	Organic–inorganic nanotube hybrids: Organosilica-nanotubes containing ethane, ethylene and acetylene groups. Journal of Organometallic Chemistry, 2011, 696, 2910-2917.	1.8	11
104	Synthesis and catalytic application of monometallic molybdenum(IV) nitrile complexes. Tetrahedron Letters, 2011, 52, 955-959.	1.4	11
105	Steric and Electronic Effects of Phosphane Additives on the Catalytic Performance of Colloidal Palladium Nanoparticles in the Semiâ€Hydrogenation of Alkynes. ChemCatChem, 2021, 13, 227-234.	3.7	11
106	lonic Liquids as Solvents for Ionic Transition-Metal Catalysts. Current Inorganic Chemistry, 2011, 1, 166-181.	0.2	10
107	Aryl-substituted organomolybdenum(ii) complexes as olefin epoxidation catalysts. Catalysis Science and Technology, 2015, 5, 4772-4777.	4.1	9
108	Influence of substituents on cation–anion contacts in imidazolium perrhenates. Dalton Transactions, 2015, 44, 8669-8677.	3.3	9

#	Article	IF	CITATIONS
109	High stability of thiol-protected colloidal platinum nanoparticles with reduced ligand coverages in the hydrogenation of 3-hexyne. Catalysis Communications, 2017, 100, 85-88.	3.3	9
110	Optimierung der Größe von Platinâ€Nanopartikeln für eine erhöhte Massenaktivitäder elektrochemischen Sauerstoffreduktion. Angewandte Chemie, 2019, 131, 9697-9702.	2.0	9
111	Epoxidation of Olefins with Molecular Catalysts in Ionic Liquids. Topics in Organometallic Chemistry, 2013, , 185-235.	0.7	8
112	Ion Pairs of Weakly Coordinating Cations and Anions: Synthesis and Application for Sulfide to Sulfoxide Oxidations. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2014, 69, 1149-1163.	0.7	8
113	Determination of the Critical Micelle Concentration of Imidazolium Ionic Liquids in Aqueous Hydrogen Peroxide. Langmuir, 2019, 35, 16297-16303.	3.5	8
114	Synthesis and Characterization of Imidazolium Salts with the Weakly Coordinating [B(C ₆ F ₅) ₄] [–] Anion. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2012, 67, 1030-1036.	0.7	7
115	Structure and spectroscopic properties of the dimeric copper(I) N-heterocyclic carbene complex [Cu ₂ (CNC _{<i>t</i>Bu}) ₂](PF ₆) ₂ . Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 643-646.	0.5	7
116	Synthesis and Characterization of Dioxidodiphenylrhenium(VII) Propionate. European Journal of Inorganic Chemistry, 2012, 2012, 1353-1357.	2.0	6
117	Catalytic epoxidation of camphene using methyltrioxorhenium(VII) as catalyst. Journal of Molecular Catalysis A, 2013, 368-369, 145-151.	4.8	6
118	Synthesis and Characterization of Imidazolium Perrhenate Ionic Liquids. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 598-604.	0.7	6
119	Efficient epoxidation of propene using molecular catalysts. Catalysis Science and Technology, 2014, 4, 3845-3849.	4.1	6
120	N-alkyl ammonium perrhenate salts as catalysts for the epoxidation of olefins under mild conditions. Catalysis Communications, 2017, 100, 103-106.	3.3	6
121	Vectorial Catalysis in Surfaceâ€Anchored Nanometerâ€Sized Metal–Organic Frameworksâ€Based Microfluidic Devices. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
122	Cover Picture: Transformation of Carbon Dioxide with Homogeneous Transitionâ€Metal Catalysts: A Molecular Solution to a Global Challenge? (Angew. Chem. Int. Ed. 37/2011). Angewandte Chemie - International Edition, 2011, 50, 8439-8439.	13.8	4
123	Kinetic Model of Twoâ€Phase Epoxidation with Ionic Liquids as Micellar Catalysts. Chemical Engineering and Technology, 2019, 42, 232-240.	1.5	4
124	Thermal defect engineering of precious group metal–organic frameworks: impact on the catalytic cyclopropanation reaction. Catalysis Science and Technology, 2020, 10, 8077-8085.	4.1	4
125	Structural studies of ligand stabilized Ni/Ga clusters by means of vibrational spectroscopy and theoretical calculations. Journal of Raman Spectroscopy, 2021, 52, 2317-2337.	2.5	4
126	Activation of hydrogen peroxide by the nitrate anion in micellar media. Green Chemistry, 2021, 23, 1965-1971.	9.0	3

#	Article	IF	CITATIONS
127	Enhanced Hydrogenation Catalytic Activity of Ruthenium Nanoparticles by Solid olution Alloying with Molybdenum. European Journal of Inorganic Chemistry, 2021, 2021, 1186-1189.	2.0	3
128	Kinetics of Epoxidation of Cyclooctene with Ionic Liquids Containing Tungstate as Micellar Catalyst. Chemical Engineering and Technology, 2021, 44, 2374.	1.5	3
129	Valorization of Carbon Dioxide to Organic Products with Organocatalysts. Green Chemistry and Sustainable Technology, 2014, , 3-37.	0.7	2
130	Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1 <i>H</i> -imidazol-1-yl]methane}(MeCN)(PMe ₃)](PF ₆) _{2< structure of the ligand decomposition product trapped<i>via</i>coordination to iron(II). Acta Crystallographica Section C, Structural Chemistry, 2015, 71, 1096-1099.}	/sub>: 0.5	2
131	Nanometallurgy in solution: organometallic synthesis of intermetallic Pd–Ga colloids and their activity in semi-hydrogenation catalysis. Nanoscale, 2021, 13, 15038-15047.	5.6	1
132	Frontispiece: Vectorial Catalysis in Surfaceâ€Anchored Nanometerâ€Sized Metal–Organic Frameworksâ€Based Microfluidic Devices. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
133	Transition Metal Chemistry of Low Valent Group 13 Organyls. ChemInform, 2005, 36, no.	0.0	0
134	Cover Picture: Substituent-Free Gallium by Hydrogenolysis of Coordinated GaCp*: Synthesis and Structure of Highly Fluxional [Ru2(Ga)(GaCp*)7(H)3] (Angew. Chem. Int. Ed. 21/2009). Angewandte Chemie - International Edition, 2009, 48, 3713-3713.	13.8	0
135	Vectorial Catalysis in Surfaceâ€Anchored Nanometerâ€sized Metalâ€Organic Frameworksâ€based Microfluidic Devices. Angewandte Chemie, 0, , .	2.0	0
136	Frontispiz: Vektorielle Katalyse mit oberflÃ e henverankerten nanoâ€netallorganischen Gerüsten in mikrofluidischen Reaktoren. Angewandte Chemie, 2022, 134, .	2.0	0