Wengui Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686292/publications.pdf Version: 2024-02-01

WENCHI WENC

#	Article	IF	CITATIONS
1	Optically reconfigurable shape memory metallo-polymer mediated by a carbolong complex and radically exchangeable covalent bond. Polymer Chemistry, 2022, 13, 1844-1851.	3.9	8
2	Dynamic covalent polymer networks with mechanical and mechanoresponsive properties reinforced by strong hydrogen bonding. Polymer Chemistry, 2022, 13, 2173-2177.	3.9	8
3	Tough self-reporting elastomer with NIR induced shape memory effect. Ciant, 2021, 8, 100069.	5.1	10
4	Single-molecule observation of mechanical isomerization of spirothiopyran and subsequent Click addition. Nano Research, 2021, 14, 2654-2658.	10.4	14
5	A Polymer with Mechanochemically Active Hidden Length. Journal of the American Chemical Society, 2020, 142, 18687-18697.	13.7	46
6	A Mechanochemical Reaction Cascade for Controlling Loadâ€5trengthening of a Mechanochromic Polymer. Angewandte Chemie, 2020, 132, 22164-22169.	2.0	9
7	A Mechanochemical Reaction Cascade for Controlling Loadâ€5trengthening of a Mechanochromic Polymer. Angewandte Chemie - International Edition, 2020, 59, 21980-21985.	13.8	43
8	Dynamic Polymer Network System Mediated by Radically Exchangeable Covalent Bond and Carbolong Complex. ACS Macro Letters, 2020, 9, 344-349.	4.8	30
9	Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers. Chemical Science, 2019, 10, 8367-8373.	7.4	62
10	"Carbolong―polymers with near infrared triggered, spatially resolved and rapid self-healing properties. Polymer Chemistry, 2019, 10, 386-394.	3.9	27
11	A cyclic cinnamate dimer mechanophore for multimodal stress responsive and mechanically adaptable polymeric materials. Polymer Chemistry, 2019, 10, 905-910.	3.9	19
12	Unveiling how intramolecular stacking modes of covalently linked dimers dictate photoswitching properties. Nature Communications, 2019, 10, 5480.	12.8	6
13	Cocrystallization of Imideâ€Fused Corannulene Derivatives and C ₆₀ : Guestâ€Induced Conformational Switching and 1:1 Segregated Packing. Chemistry - an Asian Journal, 2018, 13, 2934-2938.	3.3	6
14	Multi-modal mechanophores based on cinnamate dimers. Nature Communications, 2017, 8, 1147.	12.8	106
15	Mechanochromism and Mechanicalâ€Forceâ€Triggered Crossâ€Linking from a Single Reactive Moiety Incorporated into Polymer Chains. Angewandte Chemie, 2016, 128, 3092-3096.	2.0	35
16	Mechanochromism and Mechanicalâ€Forceâ€Triggered Crossâ€Linking from a Single Reactive Moiety Incorporated into Polymer Chains. Angewandte Chemie - International Edition, 2016, 55, 3040-3044.	13.8	202
17	Titelbild: Mechanochromism and Mechanicalâ€Forceâ€Triggered Crossâ€Linking from a Single Reactive Moiety Incorporated into Polymer Chains (Angew. Chem. 9/2016). Angewandte Chemie, 2016, 128, 2999-2999.	2.0	2
18	Dualâ€responsive reversible photo/thermogelling polymers exhibiting high modulus change. Journal of Polymer Science Part A, 2016, 54, 2837-2844.	2.3	35

Wengui Weng

#	Article	IF	CITATIONS
19	A simple and versatile approach to self-healing polymers and electrically conductive composites. RSC Advances, 2015, 5, 13261-13269.	3.6	17
20	Host–guest interaction between fluoro-substituted azobenzene derivative and cyclodextrins. RSC Advances, 2015, 5, 12007-12014.	3.6	27
21	Compositional- and time-dependent dissipation, recovery and fracture toughness in hydrophobically reinforced hybrid hydrogels. Polymer, 2015, 80, 130-137.	3.8	20
22	Mechanochemistry of Topological Complex Polymer Systems. Topics in Current Chemistry, 2014, 369, 135-207.	4.0	19
23	Mechanical Activation of Mechanophore Enhanced by Strong Hydrogen Bonding Interactions. ACS Macro Letters, 2014, 3, 141-145.	4.8	101
24	Self-healing metallo-supramolecular polymers from a ligand macromolecule synthesized via copper-catalyzed azide–alkyne cycloaddition and thiol–ene double "click―reactions. Polymer Chemistry, 2014, 5, 1945-1953.	3.9	61
25	Spiropyran as a Mechanochromic Probe in Dual Cross-Linked Elastomers. Macromolecules, 2014, 47, 6783-6790.	4.8	119
26	A corannulene-based donor–acceptor polymer for organic field-effect transistors. RSC Advances, 2014, 4, 56749-56755.	3.6	34
27	Mechanoresponsive PS-PnBA-PS Triblock Copolymers via Covalently Embedding Mechanophore. ACS Macro Letters, 2013, 2, 705-709.	4.8	81
28	Biomimetic Modular Polymer with Tough and Stress Sensing Properties. Macromolecules, 2013, 46, 6566-6574.	4.8	96
29	Mechanoresponsive Healable Metallosupramolecular Polymers. Macromolecules, 2013, 46, 8649-8656.	4.8	156
30	Using metal–ligand interactions to access biomimetic supramolecular polymers with adaptive and superb mechanical properties. Journal of Materials Chemistry B, 2013, 1, 4809.	5.8	26
31	Multiresponsive supramolecular gels constructed by orthogonal metal–ligand coordination and hydrogen bonding. European Polymer Journal, 2013, 49, 4062-4071.	5.4	19
32	Multi-responsive self-healing metallo-supramolecular gels based on "click―ligand. Journal of Materials Chemistry, 2012, 22, 11515.	6.7	130
33	One-step functionalization of graphene with cyclopentadienyl-capped macromolecules via Diels–Alder "click―chemistry. Journal of Materials Chemistry, 2012, 22, 7929.	6.7	55
34	Advances in the Surface Engineering of Upconversion Nanocrystals. Science of Advanced Materials, 2012, 4, 1-22.	0.7	36
35	A Healable Supramolecular Polymer Blend Based on Aromatic Ï€â~'Ĩ€ Stacking and Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2010, 132, 12051-12058.	13.7	779
36	Control of Gel Morphology and Properties of a Class of Metallo-Supramolecular Polymers by Good/Poor Solvent Environments. Macromolecules, 2009, 42, 236-246.	4.8	98

Wengui Weng

#	Article	IF	CITATIONS
37	Effect of monomer structure on the gelation of a class of metallo-supramolecular polymers. Soft Matter, 2009, 5, 4647.	2.7	47
38	Structural origin of the thixotropic behavior of a class of metallosupramolecular gels. Tetrahedron, 2007, 63, 7419-7431.	1.9	63
39	Understanding the Mechanism of Gelation and Stimuli-Responsive Nature of a Class of Metallo-Supramolecular Gels. Journal of the American Chemical Society, 2006, 128, 11663-11672.	13.7	508
40	Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer, 2005, 46, 6250-6257.	3.8	77
41	Piezoresistive Materials from Directed Shear-Induced Assembly of Graphite Nanosheets in Polyethylene. Advanced Functional Materials, 2005, 15, 1358-1363.	14.9	138
42	HDPE/expanded graphite electrically conducting composite. Composite Interfaces, 2004, 11, 131-143.	2.3	60
43	Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 155-167.	2.1	42
44	Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2844-2856.	2.1	84
45	Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon, 2004, 42, 753-759.	10.3	412
46	Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites. Polymer, 2003, 44, 8119-8132.	3.8	180
47	Exfoliation of graphite flake and its nanocomposites. Carbon, 2003, 41, 619-621.	10.3	225
48	PMMA/graphite nanosheets composite and its conducting properties. European Polymer Journal, 2003, 39, 2329-2335.	5.4	325
49	Preparation of polystyrene/graphite nanosheet composite. Polymer, 2003, 44, 1781-1784.	3.8	297
50	Preparation and characterizations of nanoparticles from graphite via an electrochemically oxidizing method. Synthetic Metals, 2003, 139, 221-225.	3.9	30
51	Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International, 2001, 50, 980-985.	3.1	176
52	Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polymer Engineering and Science, 2001, 41, 2148-2154.	3.1	82
53	Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. Journal of Applied Polymer Science, 2001, 82, 2506-2513.	2.6	243