David Augustine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686167/publications.pdf

Version: 2024-02-01

81900 62596 7,362 122 39 80 citations h-index g-index papers 125 125 125 6449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determinants of woody cover in African savannas. Nature, 2005, 438, 846-849.	27.8	1,543
2	Ungulate Effects on the Functional Species Composition of Plant Communities: Herbivore Selectivity and Plant Tolerance. Journal of Wildlife Management, 1998, 62, 1165.	1.8	831
3	Regulation of shrub dynamics by native browsing ungulates on East African rangeland. Journal of Applied Ecology, 2004, 41, 45-58.	4.0	250
4	Effects of White-Tailed Deer on Populations of an Understory Forb in Fragmented Deciduous Forests. Conservation Biology, 1998, 12, 995-1004.	4.7	216
5	FEEDBACKS BETWEEN SOIL NUTRIENTS AND LARGE HERBIVORES IN A MANAGED SAVANNA ECOSYSTEM. , 2003, 13, 1325-1337.		204
6	EFFECTS OF MIGRATORY GRAZERS ON SPATIAL HETEROGENEITY OF SOIL NITROGEN PROPERTIES IN A GRASSLAND ECOSYSTEM. Ecology, 2001, 82, 3149-3162.	3.2	197
7	Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. Journal of Applied Ecology, 2003, 40, 137-149.	4.0	176
8	Livestock as Ecosystem Engineers for Grassland Bird Habitat in the Western Great Plains of North America. Rangeland Ecology and Management, 2009, 62, 111-118.	2.3	172
9	Interactive Effects of Ungulate Herbivores, Soil Fertility, and Variable Rainfall on Ecosystem Processes in a Semi-arid Savanna. Ecosystems, 2006, 9, 1242-1256.	3.4	166
10	EVIDENCE FOR TWO ALTERNATE STABLE STATES IN AN UNGULATE GRAZING SYSTEM. , 1998, 8, 1260-1269.		125
11	LARGE HERBIVORES SUPPRESS DECOMPOSER ABUNDANCE IN A SEMIARID GRAZING ECOSYSTEM. Ecology, 2004, 85, 1052-1061.	3.2	119
12	Native ungulates of diverse body sizes collectively regulate longâ€term woody plant demography and structure of a semiâ€arid savanna. Journal of Ecology, 2013, 101, 1389-1399.	4.0	115
13	Defining deer overabundance and threats to forest communities: From individual plants to landscape structure. Ecoscience, 2003, 10, 472-486.	1.4	95
14	Spatial heterogeneity in the herbaceous layer of a semi-arid savanna ecosystem. Plant Ecology, 2003, 167, 319-332.	1.6	92
15	Strategic management of livestock to improve biodiversity conservation in <scp>A</scp> frican savannahs: a conceptual basis for wildlife–livestock coexistence. Journal of Applied Ecology, 2016, 53, 388-397.	4.0	91
16	Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous?. Oecologia, 2012, 170, 799-808.	2.0	90
17	Local versus landscapeâ€scale effects of savanna trees on grasses. Journal of Ecology, 2009, 97, 1337-1345.	4.0	88
18	Grazing intensity differentially regulates ANPP response to precipitation in North American semiarid grasslands. Ecological Applications, 2016, 26, 1370-1380.	3.8	81

#	Article	IF	CITATIONS
19	Functional response of U.S. grasslands to the early 21stâ€century drought. Ecology, 2014, 95, 2121-2133.	3.2	75
20	Evaluating strategies for sustainable intensification of US agriculture through the Long-Term Agroecosystem Research network. Environmental Research Letters, 2018, 13, 034031.	5.2	75
21	Plant Community Composition After 75 Yr of Sustained Grazing Intensity Treatments in Shortgrass Steppe. Rangeland Ecology and Management, 2017, 70, 456-464.	2.3	72
22	Predictors of White-Tailed Deer Grazing Intensity in Fragmented Deciduous Forests. Journal of Wildlife Management, 1998, 62, 1076.	1.8	71
23	Assessing Herbivore Foraging Behavior with GPS Collars in a Semiarid Grassland. Sensors, 2013, 13, 3711-3723.	3.8	70
24	Elevated <scp>CO</scp> ₂ induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecological Applications, 2018, 28, 721-735.	3.8	67
25	Thresholds and gradients in a semiâ€arid grassland: longâ€term grazing treatments induce slow, continuous and reversible vegetation change. Journal of Applied Ecology, 2016, 53, 1013-1022.	4.0	65
26	Controls over the strength and timing of fire–grazer interactions in a semiâ€arid rangeland. Journal of Applied Ecology, 2014, 51, 242-250.	4.0	63
27	Collaborative Adaptive Rangeland Management Fosters Management-Science Partnerships. Rangeland Ecology and Management, 2018, 71, 646-657.	2.3	63
28	Complexity fosters learning in collaborative adaptive management. Ecology and Society, 2019, 24, .	2.3	58
29	Adaptive Management for Drought on Rangelands. Rangelands, 2016, 38, 211-215.	1.9	57
30	Response of native ungulates to drought in semiâ€arid Kenyan rangeland. African Journal of Ecology, 2010, 48, 1009-1020.	0.9	56
31	Temporal Asynchrony in Soil Nutrient Dynamics and Plant Production in a Semiarid Ecosystem. Ecosystems, 2004, 7, 829-840.	3.4	53
32	Conservation lessons from largeâ€mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Annals of the New York Academy of Sciences, 2018, 1429, 31-49.	3.8	53
33	Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate. Climatic Change, 2018, 146, 19-32.	3.6	52
34	Traits link drought resistance with herbivore defence and plant economics in semiâ€arid grasslands: The central roles of phenology and leaf dry matter content. Journal of Ecology, 2020, 108, 2336-2351.	4.0	49
35	Prescribed Fire, Grazing, and Herbaceous Plant Production in Shortgrass Steppe. Rangeland Ecology and Management, 2010, 63, 317-323.	2.3	48
36	Adaptive, Multipaddock Rotational Grazing Management: A Ranch-Scale Assessment of Effects on Vegetation and Livestock Performance in Semiarid Rangeland. Rangeland Ecology and Management, 2020, 73, 796-810.	2.3	48

#	Article	IF	CITATIONS
37	Spatial versus temporal variation in precipitation in a semiarid ecosystem. Landscape Ecology, 2010, 25, 913-925.	4.2	47
38	Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology, 2015, 96, 2705-2714.	3.2	47
39	INFLUENCE OF CATTLE MANAGEMENT ON HABITAT SELECTION BY IMPALA ON CENTRAL KENYAN RANGELAND. Journal of Wildlife Management, 2004, 68, 916-923.	1.8	46
40	Managing for Biodiversity and Livestock. Rangelands, 2010, 32, 10-15.	1.9	46
41	Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland. Journal of Arid Environments, 2014, 104, 59-66.	2.4	44
42	Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology, 2020, 101, e03008.	3.2	43
43	Diverse Management Strategies Produce Similar Ecological Outcomes on Ranches in Western Great Plains: Social-Ecological Assessment. Rangeland Ecology and Management, 2018, 71, 626-636.	2.3	41
44	Pathways for Positive Cattle–Wildlife Interactions in Semiarid Rangelands. Smithsonian Contributions To Zoology, 2011, , 55-71.	1.5	41
45	Grazing moderates increases in C ₃ grass abundance over seven decades across a soil texture gradient in shortgrass steppe. Journal of Vegetation Science, 2017, 28, 562-572.	2.2	40
46	Interactions between frequency–dependent and vertical transmission in host–parasite systems. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 807-814.	2.6	39
47	Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality., 2013, 23, 850-863.		39
48	Quantifying characteristic growth dynamics in a semi-arid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a simple four parameter coupled-reservoir model. International Journal of Remote Sensing, 2015, 36, 5637-5663.	2.9	38
49	Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague. Landscape Ecology, 2008, 23, 255-267.	4.2	37
50	Swift Fox Response to Prescribed Fire in Shortgrass Steppe. Western North American Naturalist, 2008, 68, 251-256.	0.4	36
51	Patch-burn grazing management, vegetation heterogeneity, and avian responses in a semi-arid grassland. Journal of Wildlife Management, 2015, 79, 927-936.	1.8	36
52	Grazing Intensity and Spatial Heterogeneity in Bare Soil in a Grazing-Resistant Grassland. Rangeland Ecology and Management, 2012, 65, 39-46.	2.3	35
53	Thinking Like a Grassland: Challenges and Opportunities for Biodiversity Conservation in the Great Plains of North America. Rangeland Ecology and Management, 2021, 78, 281-295.	2.3	35
54	Effects of Migratory Grazers on Spatial Heterogeneity of Soil Nitrogen Properties in a Grassland Ecosystem. Ecology, 2001, 82, 3149.	3.2	32

#	Article	IF	Citations
55	Opportunities for Increasing Utility of Models for Rangeland Management. Rangeland Ecology and Management, 2012, 65, 623-631.	2.3	31
56	Disturbance regimes and mountain plover habitat in shortgrass steppe: Large herbivore grazing does not substitute for prairie dog grazing or fire. Journal of Wildlife Management, 2012, 76, 721-728.	1.8	31
57	Vegetation Responses to Prescribed Burning of Grazed Shortgrass Steppe. Rangeland Ecology and Management, 2009, 62, 89-97.	2.3	30
58	Associations of Grassland Bird Communities with Blackâ€Tailed Prairie Dogs in the North American Great Plains. Conservation Biology, 2013, 27, 324-334.	4.7	29
59	Does Grazing Matter for Soil Organic Carbon Sequestration in the Western North American Great Plains?. Ecosystems, 2019, 22, 1088-1094.	3.4	28
60	Adaptive rangeland management benefits grassland birds utilizing opposing vegetation structure in the shortgrass steppe. Ecological Applications, 2020, 30, e02020.	3.8	28
61	Rhizosphere interactions, carbon allocation, and nitrogen acquisition of two perennial North American grasses in response to defoliation and elevated atmospheric CO2. Oecologia, 2011, 165, 755-770.	2.0	27
62	Semiâ€arid grassland bird responses to patchâ€burn grazing and drought. Journal of Wildlife Management, 2018, 82, 445-456.	1.8	27
63	Response of mountain plovers to plague-driven dynamics of black-tailed prairie dog colonies. Landscape Ecology, 2008, 23, 689-697.	4.2	26
64	Disturbance shapes avian communities on a grassland–sagebrush ecotone. Ecosphere, 2018, 9, e02483.	2.2	23
65	A thorny issue: Woody plant defence and growth in an East African savanna. Journal of Ecology, 2019, 107, 1839-1851.	4.0	23
66	Modelling Chlamydia –koala interactions: coexistence, population dynamics and conservation implications. Journal of Applied Ecology, 1998, 35, 261-272.	4.0	22
67	Interspecific Variation in the Reproductive Response of Acacia Species to Protection from Large Mammalian Herbivores. Biotropica, 2007, 39, 559-561.	1.6	21
68	Using APAR to Predict Aboveground Plant Productivity in Semi-Aid Rangelands: Spatial and Temporal Relationships Differ. Remote Sensing, 2018, 10, 1474.	4.0	21
69	Can Collaborative Adaptive Management Improve Cattle Production in Multipaddock Grazing Systems?. Rangeland Ecology and Management, 2021, 75, 1-8.	2.3	21
70	Ecosystem engineering varies spatially: a test of the vegetation modification paradigm for prairie dogs. Ecography, 2013, 36, 230-239.	4.5	20
71	Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna. Ecology, 2017, 98, 478-488.	3.2	20
72	Application of grazing land models in ecosystem management: Current status and next frontiers. Advances in Agronomy, 2019, 158, 173-215.	5.2	20

#	Article	IF	CITATIONS
73	Spatial Redistribution of Nitrogen by Cattle in Semiarid Rangeland. Rangeland Ecology and Management, 2013, 66, 56-62.	2.3	18
74	Sensitivity of productivity to precipitation amount and pattern varies by topographic position in a semiarid grassland. Ecosphere, 2021, 12, e03376.	2.2	18
75	Patch Burn Grazing Management in a Semiarid Grassland: Consequences for Pronghorn, Plains Pricklypear, and Wind Erosion. Rangeland Ecology and Management, 2015, 68, 40-47.	2.3	17
76	Disproportionate effects of nonâ€colonial small herbivores on structure and diversity of grassland dominated by large herbivores. Oikos, 2013, 122, 1757-1767.	2.7	16
77	Testing for Thresholds in a Semiarid Grassland: The Influence of Prairie Dogs and Plague. Rangeland Ecology and Management, 2014, 67, 701-709.	2.3	15
78	Community-Engaged Research Builds a Nature-Culture of Hope on North American Great Plains Rangelands. Social Sciences, 2019, 8, 22.	1.4	15
79	Influence of Fire on Black-tailed Prairie Dog Colony Expansion in Shortgrass Steppe. Rangeland Ecology and Management, 2007, 60, 538-542.	2.3	14
80	Composted manure application promotes longâ€ŧerm invasion of semiâ€arid rangeland by <i>Bromus tectorum</i> . Ecosphere, 2017, 8, e01960.	2.2	14
81	Largeâ€scale and local climatic controls on large herbivore productivity: implications for adaptive rangeland management. Ecological Applications, 2020, 30, e02053.	3.8	14
82	Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management. Remote Sensing of Environment, 2022, 271, 112907.	11.0	14
83	Weather radar data correlate to hailâ€induced mortality in grassland birds. Remote Sensing in Ecology and Conservation, 2017, 3, 90-101.	4.3	13
84	Cattle Grazing Distribution in Shortgrass Steppe: Influences of Topography and Saline Soils. Rangeland Ecology and Management, 2019, 72, 602-614.	2.3	13
85	Threshold responses of grassland and sagebrush birds to patterns of disturbance created by an ecosystem engineer. Landscape Ecology, 2019, 34, 895-909.	4.2	13
86	Collaborative Adaptive Rangeland Management, Multipaddock Rotational Grazing, and the Story of the Regrazed Grass Plant. Rangeland Ecology and Management, 2021, 78, 127-141.	2.3	13
87	Mountain plover nest survival in relation to prairie dog and fire dynamics in shortgrass steppe. Journal of Wildlife Management, 2014, 78, 595-602.	1.8	12
88	Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures. Applied Animal Behaviour Science, 2021, 242, 105402.	1.9	12
89	Characteristics of Burns Conducted under Modified Prescriptions to Mitigate Limited Fuels in a Semi-Arid Grassland. Fire Ecology, 2014, 10, 36-47.	3.0	11
90	Large herbivores maintain a twoâ€phase herbaceous vegetation mosaic in a semiâ€arid savanna. Ecology and Evolution, 2019, 9, 12779-12788.	1.9	11

#	Article	IF	Citations
91	Climatic and management determinants of large herbivore production in semiarid grassland. Agriculture, Ecosystems and Environment, 2020, 290, 106761.	5.3	11
92	Multidecadal directional shift in shortgrass stocking rates. Rangeland Ecology and Management, 2021, 74, 72-80.	2.3	10
93	Social learning lessons from Collaborative Adaptive Rangeland Management. Rangelands, 2022, 44, 316-326.	1.9	10
94	Longâ€Term Effects of Blackâ€Tailed Prairie Dogs on Livestock Grazing Distribution and Mass Gain. Journal of Wildlife Management, 2021, 85, 1332-1343.	1.8	10
95	Large herbivores suppress liana infestation in an African savanna. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	10
96	Dormant-Season Fire Inhibits Sixweeks Fescue and Enhances Forage Production in Shortgrass Steppe. Fire Ecology, 2018, 14, 33-49.	3.0	9
97	Strong but opposing effects of associational resistance and susceptibility on defense phenotype in an African savanna plant. Oikos, 2019, 128, 1772-1782.	2.7	9
98	Mountain Plover habitat selection and nest survival in relation to weather variability and spatial attributes of black-tailed prairie dog disturbance. Condor, 2020, 122, .	1.6	9
99	Habitat selection and group foraging of the springhare, Pedetes capensis larvalis Hollister, in East Africa. African Journal of Ecology, 1995, 33, 347-357.	0.9	8
100	Predicting spatialâ€temporal patterns of diet quality and large herbivore performance using satellite time series. Ecological Applications, 2022, 32, e2503.	3.8	8
101	Habitat selection by mountain plovers in shortgrass steppe. Journal of Wildlife Management, 2011, 75, 297-304.	1.8	7
102	Aerial surveys adjusted by ground surveys to estimate area occupied by blackâ€ŧailed prairie dog colonies. Wildlife Society Bulletin, 2012, 36, 248-256.	1.6	7
103	Searching for cover: soil enrichment and herbivore exclusion, not fire, enhance African savanna smallâ€mammal abundance. Ecosphere, 2018, 9, e02519.	2.2	7
104	Ecological Sites: Can they be Managed to Promote Livestock Production?. Rangelands, 2019, 41, 239-243.	1.9	7
105	Assessing the rate and reversibility of largeâ€herbivore effects on community composition in a semiâ€arid grassland ecosystem. Journal of Vegetation Science, 2021, 32, .	2.2	7
106	Vegetation characteristics and precipitation jointly influence grassland bird abundance beyond the effects of grazing management. Condor, 2021, 123, .	1.6	7
107	Adaptive grazing management in semiarid rangelands: An outcome-driven focus. Rangelands, 2022, 44, 111-118.	1.9	6
108	Managing Browsing and Grazing Ungulates. Ecological Studies, 2019, , 321-338.	1.2	6

#	Article	IF	CITATIONS
109	Boom and bust cycles of black-tailed prairie dog populations in the Thunder Basin grassland ecosystem. Journal of Mammalogy, 2022, 103, 1112-1126.	1.3	5
110	Can measurements of foraging behaviour predict variation in weight gains of free-ranging cattle?. Animal Production Science, 2022, 62, 926-936.	1.3	5
111	Distribution and nesting success of ferruginous hawks and Swainson's hawks on an agricultural landscape in the Great Plains. Southwestern Naturalist, 2014, 59, 356-363.	0.1	4
112	UAVâ^Enabled Quantification of Grazing-Induced Changes in Uniformity of Green Cover on Semiarid and Mesic Grasslands. Rangeland Ecology and Management, 2022, 80, 68-77.	2.3	4
113	Evaluation of the APEX cattle weight gain component for grazing decision-support in the Western Great Plains. Rangeland Ecology and Management, 2022, 82, 1-11.	2.3	4
114	Stocking rate and marketing dates for yearling steers grazing rangelands: Can producers do things differently to increase economic net benefits?. Rangelands, 2022, 44, 251-257.	1.9	4
115	Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sensing, 2021, 13, 4603.	4.0	3
116	Can grazing by elk and bison stimulate herbaceous plant productivity in semiarid ecosystems?. Ecosphere, 2022, 13, .	2.2	3
117	COMPETITION AND FACILITATION BETWEEN PRAIRIE DOGS AND LIVESTOCK. Bulletin of the Ecological Society of America, 2013, 94, 177-179.	0.2	2
118	Anthropogenic and Natural Disturbance Differentially Affect Sagebrush Bird Habitat Use. Journal of Wildlife Management, 2020, 84, 1361-1372.	1.8	2
119	Integrating Wildlife Count Models With State-and-Transition Models to Enhance Rangeland Management for Multiple Objectives. Rangeland Ecology and Management, 2021, 78, 15-25.	2.3	2
120	Remotely Sensed Spatiotemporal Variation in Crude Protein of Shortgrass Steppe Forage. Remote Sensing, 2022, 14, 854.	4.0	2
121	Contrasting Effects of Grazing vs Browsing Herbivores Determine Changes in Soil Fertility in an East African Savanna. Ecosystems, 2023, 26, 161-173.	3.4	2
122	Largeâ€Scale and Local Climatic Controls on Large Herbivore Productivity: Implications for Adaptive Rangeland Management. Bulletin of the Ecological Society of America, 2020, 101, e01665.	0.2	0