
Jinlong Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686017/publications.pdf Version: 2024-02-01

LINLONG YIN

#	Article	IF	CITATIONS
1	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	10.3	71
2	The MAP3K1/c-JUN signaling axis regulates glioblastoma stem cell invasion and tumor progression. Biochemical and Biophysical Research Communications, 2022, 612, 188-195.	2.1	0
3	Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. Advanced Science, 2021, 8, e2102001.	11.2	21
4	Analysis of electric cigarette liquid effect on mouse brain tumor growth through EGFR and ERK activation. PLoS ONE, 2021, 16, e0256730.	2.5	5
5	Cationâ€Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. Advanced Materials, 2021, 33, e2104779.	21.0	52
6	Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials, 2021, 276, 121036.	11.4	29
7	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	7.6	16
8	Cationâ€Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy (Adv. Mater. 45/2021). Advanced Materials, 2021, 33, 2170357.	21.0	1
9	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	8.8	73
10	ARS2/MAGL signaling in glioblastoma stem cells promotes self-renewal and M2-like polarization of tumor-associated macrophages. Nature Communications, 2020, 11, 2978.	12.8	78
11	Evaluation of nanomechanical properties of hyperbranched polyglycerols as prospective cell membrane engineering block. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110968.	5.0	7
12	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Letters, 2020, 20, 1637-1646.	9.1	102
13	ROSâ€Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Advanced Materials, 2019, 31, e1903277.	21.0	155
14	Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Research, 2019, 79, 1369-1382.	0.9	80
15	Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway. Molecules and Cells, 2019, 42, 604-616.	2.6	10
16	Inhibition of ID1–BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clinical Cancer Research, 2018, 24, 383-394.	7.0	26
17	Inhibition of BMP signaling overcomes acquired resistance to cetuximab in oral squamous cell carcinomas. Cancer Letters, 2018, 414, 181-189.	7.2	15
18	Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling. Cancer Research, 2017, 77, 4973-4984.	0.9	68

JINLONG YIN

#	Article	IF	CITATIONS
19	The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells. Cell Reports, 2016, 16, 1629-1641.	6.4	44
20	TRIM71 suppresses tumorigenesis via modulation of Lin28B-let-7-HMGA2 signaling. Oncotarget, 2016, 7, 79854-79868.	1.8	18
21	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	5.6	56
22	DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138, 2553-2570.	7.6	67
23	Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Letters, 2014, 353, 194-200.	7.2	58
24	hMSC-mediated Concurrent Delivery of Endostatin and Carboxylesterase to Mouse Xenografts Suppresses Glioma Initiation and Recurrence. Molecular Therapy, 2011, 19, 1161-1169.	8.2	45
25	In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. Biotechnology Letters, 2010, 32, 195-202.	2.2	15