Jinlong Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8686017/publications.pdf

Version: 2024-02-01

471509 610901 1,112 25 17 24 h-index citations g-index papers 25 25 25 1906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ROSâ€Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Advanced Materials, 2019, 31, e1903277.	21.0	155
2	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Letters, 2020, 20, 1637-1646.	9.1	102
3	Interplay between TRAP1 and Sirtuin-3 Modulates Mitochondrial Respiration and Oxidative Stress to Maintain Stemness of Glioma Stem Cells. Cancer Research, 2019, 79, 1369-1382.	0.9	80
4	ARS2/MAGL signaling in glioblastoma stem cells promotes self-renewal and M2-like polarization of tumor-associated macrophages. Nature Communications, 2020, 11, 2978.	12.8	78
5	Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biology, 2020, 21, 216.	8.8	73
6	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	10.3	71
7	Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPÎ ² Signaling. Cancer Research, 2017, 77, 4973-4984.	0.9	68
8	DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138, 2553-2570.	7.6	67
9	Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Letters, 2014, 353, 194-200.	7.2	58
10	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	5.6	56
11	Cationâ€Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. Advanced Materials, 2021, 33, e2104779.	21.0	52
12	hMSC-mediated Concurrent Delivery of Endostatin and Carboxylesterase to Mouse Xenografts Suppresses Glioma Initiation and Recurrence. Molecular Therapy, 2011, 19, 1161-1169.	8.2	45
13	The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells. Cell Reports, 2016, 16, 1629-1641.	6.4	44
14	Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials, 2021, 276, 121036.	11.4	29
15	Inhibition of ID1–BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clinical Cancer Research, 2018, 24, 383-394.	7. O	26
16	Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. Advanced Science, 2021, 8, e2102001.	11.2	21
17	TRIM71 suppresses tumorigenesis via modulation of Lin28B-let-7-HMGA2 signaling. Oncotarget, 2016, 7, 79854-79868.	1.8	18
18	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	7.6	16

#	Article	IF	CITATIONS
19	In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. Biotechnology Letters, 2010, 32, 195-202.	2.2	15
20	Inhibition of BMP signaling overcomes acquired resistance to cetuximab in oral squamous cell carcinomas. Cancer Letters, 2018, 414, 181-189.	7.2	15
21	Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway. Molecules and Cells, 2019, 42, 604-616.	2.6	10
22	Evaluation of nanomechanical properties of hyperbranched polyglycerols as prospective cell membrane engineering block. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110968.	5.0	7
23	Analysis of electric cigarette liquid effect on mouse brain tumor growth through EGFR and ERK activation. PLoS ONE, 2021, 16, e0256730.	2.5	5
24	Cationâ€Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy (Adv. Mater. 45/2021). Advanced Materials, 2021, 33, 2170357.	21.0	1
25	The MAP3K1/c-JUN signaling axis regulates glioblastoma stem cell invasion and tumor progression. Biochemical and Biophysical Research Communications, 2022, 612, 188-195.	2.1	0