Pawan K Jaiwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8685845/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnology Letters, 2022, 44, 643-669.	2.2	6

 $_2$ Biotechnological interventions for the sustainable management of a global pest, whitefly (<i>Bemisia) Tj ETQq0 0 $_{3.0}^{\circ}$ BT /Overlock 10 T

3	Generation of polyclonal antibodies against recombinant Agrobacterium tumefaciens decaprenyl diphosphate synthase produced in Escherichia coli. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 487.	1.7	3
4	Transgenic cowpea plants expressing Bacillus thuringiensis Cry2Aa insecticidal protein imparts resistance to Maruca vitrata legume pod borer. Plant Cell Reports, 2021, 40, 583-594.	5.6	11
5	Tissue Culture- and Selection-Independent Agrobacterium tumefaciens-Mediated Transformation of a Recalcitrant Grain Legume, Cowpea (Vigna unguiculata L. Walp). Molecular Biotechnology, 2021, 63, 710-718.	2.4	2
6	Comparative regeneration in six bread wheat (Triticum aestivum L.) varieties from immature and mature scutella for developing efficient and genotype-independent protocol prerequisite for genetic improvement of wheat. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 610-617.	2.1	5
7	Current advances and future directions in genetic enhancement of a climate resilient food legume crop, cowpea (Vigna unguiculata L. Walp.). Plant Cell, Tissue and Organ Culture, 2019, 139, 429-453.	2.3	12
8	Tuberculosis: Current Status, Diagnosis, Treatment and Development of Novel Vaccines. Current Pharmaceutical Biotechnology, 2019, 20, 446-458.	1.6	20
9	Progress and challenges in improving the nutritional quality of rice (<i>Oryza sativa</i> L.). Critical Reviews in Food Science and Nutrition, 2017, 57, 2455-2481.	10.3	110
10	Evaluation of carbon sources, gelling agents, growth hormones and additives for efficient callus induction and plant regeneration in Indian wheat (Triticum aestivum L.) genotypes using mature embryos. Journal of Crop Science and Biotechnology, 2017, 20, 185-192.	1.5	11
11	Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renewable and Sustainable Energy Reviews, 2017, 68, 623-637.	16.4	54
12	Introgression of mungbean yellow mosaic virus resistance in Vigna mungo (L.)Hepper and purity testing of F1 hybrids using SSRs. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2016, 40, 95-100.	2.1	14
13	Siderophores; iron scavengers: the novel & promising targets for pathogen specific antifungal therapy. Expert Opinion on Therapeutic Targets, 2016, 20, 1477-1489.	3.4	22
14	Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase. Analytical Biochemistry, 2016, 500, 6-11.	2.4	35
15	Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper). Physiology and Molecular Biology of Plants, 2015, 21, 505-517.	3.1	15
16	Sesame (Sesamum indicum L.). Methods in Molecular Biology, 2015, 1224, 37-45.	0.9	8
17	Coenzyme Q10 production in plants: current status and future prospects. Critical Reviews in Biotechnology, 2015, 35, 152-164.	9.0	38
18	Evaluation of mungbean genotypes for salt tolerance at early seedling growth stage. Biocatalysis and Agricultural Biotechnology, 2014, 3, 108-113.	3.1	13

Pawan K Jaiwal

#	Article	IF	CITATIONS
19	Development of new gene-specific markers associated with salt tolerance for mungbean (Vigna radiata) Tj ETQq1	1.0.78431 0.6	4.rgBT /C∨
20	Plant regeneration from mature embryo of commercial Indian bread wheat (Triticum aestivum L.) cultivars. Physiology and Molecular Biology of Plants, 2012, 18, 177-183.	3.1	22
21	Development of an Agrobacterium-mediated stable transformation method for industrial oilseed crop Crambe abyssinica †BelAnn'. Industrial Crops and Products, 2012, 37, 457-465.	5.2	23
22	A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 7-14.	2.1	13
23	Combined expression of a barley class II chitinase and type I ribosome inactivating protein in transgenic Brassica juncea provides protection against Alternaria brassicae. Plant Cell, Tissue and Organ Culture, 2012, 108, 83-89.	2.3	53
24	Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiology and Molecular Biology of Plants, 2011, 17, 129-136.	3.1	47
25	Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus. Archives of Virology, 2010, 155, 1361-1365.	2.1	19
26	Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell, Tissue and Organ Culture, 2010, 103, 377-386.	2.3	48
27	TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiology and Molecular Biology of Plants, 2008, 14, 347-353.	3.1	34
28	Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Science, 2007, 172, 692-700.	3.6	72
29	Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Reports, 2007, 26, 187-198.	5.6	65
30	Agrobacterium tumefaciens-mediated transformation of blackgram: An assessment of factors influencing the efficiency of uidA gene transfer. Biologia Plantarum, 2007, 51, 69-74.	1.9	41
31	Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants. , 2007, , 223-258.		21
32	Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Reports, 2005, 24, 164-171.	5.6	48
33	In Vitro Regeneration and Genetic Transformation of Cowpea, Mungbean, Urdbean and Azuki Bean. Focus on Biotechnology, 2003, , 89-120.	0.4	5
34	Age, position in mother seedling, orientation, and polarity of the epicotyl segments of blackgram (Vigna mungo L. Hepper) determines its morphogenic response. Plant Science, 2002, 163, 101-109.	3.6	34
35	Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek) — a recalcitrant grain legume. Plant Science, 2001, 161, 239-247.	3.6	80

 $_{36}$ In vitro induction of multiple shoots and plant regeneration from shoot tips of mung bean (Vigna) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
37	Culture conditions effecting plant regeneration from cotyledons of Vigna radiata (L.) Wilczek. Plant Cell, Tissue and Organ Culture, 1990, 23, 1-7.	2.3	56