Shinichi Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8685665/publications.pdf Version: 2024-02-01

	117625	58581
6,957	34	82
citations	h-index	g-index
133	133	3572
docs citations	times ranked	citing authors
	6,957 citations 133 docs citations	6,957 34 citations h-index 133 133 docs citations 117625 14000000000000000000000000000000000000

#	Article	IF	CITATIONS
1	Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. International Journal of Radiation Oncology Biology Physics, 2002, 53, 822-834.	0.8	1,251
2	Physical aspects of a real-time tumor-tracking system for gated radiotherapy. International Journal of Radiation Oncology Biology Physics, 2000, 48, 1187-1195.	0.8	603
3	Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. International Journal of Radiation Oncology Biology Physics, 2000, 48, 435-442.	0.8	453
4	Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Physics in Medicine and Biology, 2004, 49, 425-440.	3.0	349
5	Intrafractional tumor motion: lung and liver. Seminars in Radiation Oncology, 2004, 14, 10-18.	2.2	337
6	Tolerance of organs at risk in small-volume, hypofractionated, image-guided radiotherapy for primary and metastatic lung cancers. International Journal of Radiation Oncology Biology Physics, 2003, 56, 126-135.	0.8	263
7	Detection of lung tumor movement in real-time tumor-tracking radiotherapy. International Journal of Radiation Oncology Biology Physics, 2001, 51, 304-310.	0.8	258
8	Real-time tumour-tracking radiotherapy. Lancet, The, 1999, 353, 1331-1332.	13.7	256
9	Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. International Journal of Radiation Oncology Biology Physics, 2000, 46, 1127-1133.	0.8	220
10	Use of an implanted marker and real-time tracking of the marker for the positioning of prostate and bladder cancers. International Journal of Radiation Oncology Biology Physics, 2000, 48, 1591-1597.	0.8	192
11	Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions. International Journal of Radiation Oncology Biology Physics, 2002, 53, 1117-1123.	0.8	187
12	Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). Radiotherapy and Oncology, 2002, 62, 275-281.	0.6	176
13	Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. International Journal of Radiation Oncology Biology Physics, 2005, 63, 1442-1447.	0.8	159
14	Realâ€ŧime tumorâ€ŧracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer, 2002, 95, 1720-1727.	4.1	157
15	Tumor location, cirrhosis, and surgical history contribute to tumor movement in the liver, as measured during stereotactic irradiation using a real-time tumor-tracking radiotherapy system. International Journal of Radiation Oncology Biology Physics, 2003, 56, 221-228.	0.8	123
16	Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging. Radiotherapy and Oncology, 1999, 50, 367-370.	0.6	95
17	Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System. International Journal of Radiation Oncology Biology Physics, 2016, 94, 172-180.	0.8	81
18	Clinical Outcomes of Stereotactic Body Radiotherapy for Small Lung Lesions Clinically Diagnosed as Primary Lung Cancer on Radiologic Examination. International Journal of Radiation Oncology Biology Physics, 2009, 75, 683-687.	0.8	72

#	Article	IF	CITATIONS
19	A Proton Beam Therapy System Dedicated to Spot-Scanning Increases Accuracy with Moving Tumors by Real-Time Imaging and Gating and Reduces Equipment Size. PLoS ONE, 2014, 9, e94971.	2.5	72
20	Real-time tumor-tracking radiotherapy for adrenal tumors. Radiotherapy and Oncology, 2008, 87, 418-424.	0.6	70
21	High-speed magnetic resonance imaging for four-dimensional treatment planning of conformal radiotherapy of moving body tumors. International Journal of Radiation Oncology Biology Physics, 2000, 48, 471-474.	0.8	69
22	Organ motion in image-guided radiotherapy: lessons from real-time tumor-tracking radiotherapy. International Journal of Clinical Oncology, 2007, 12, 8-16.	2.2	67
23	Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. International Journal of Radiation Oncology Biology Physics, 2005, 61, 1559-1564.	0.8	61
24	What is the appropriate size criterion for proton radiotherapy for hepatocellular carcinoma? A dosimetric comparison of spot-scanning proton therapy versus intensity-modulated radiation therapy. Radiation Oncology, 2013, 8, 48.	2.7	58
25	Projectionâ€domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Medical Physics, 2019, 46, 3142-3155.	3.0	55
26	Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System. International Journal of Radiation Oncology Biology Physics, 2008, 70, 931-934.	0.8	53
27	Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT). Physica Medica, 2016, 32, 305-311.	0.7	48
28	Realâ€ŧime 4â€Ð radiotherapy for lung cancer. Cancer Science, 2012, 103, 1-6.	3.9	47
29	Reduction in Acute Morbidity Using Hypofractionated Intensity-Modulated Radiation Therapy Assisted with a Fluoroscopic Real-Time Tumor-Tracking System for Prostate Cancer. Cancer Journal (Sudbury,) Tj ETQq1 I	10.2804314	4 rg₽团 /Overlo
30	Stereotactic body radiotherapy using gated radiotherapy with real-time tumor-tracking for stage I non-small cell lung cancer. Radiation Oncology, 2013, 8, 69.	2.7	42
31	Patterns of proton therapy use in pediatric cancer management in 2016: An international survey. Radiotherapy and Oncology, 2019, 132, 155-161.	0.6	42
32	Multicenter prospective study of stereotactic body radiotherapy for previously untreated solitary primary hepatocellular carcinoma: The STRSPH study. Hepatology Research, 2021, 51, 461-471.	3.4	40
33	Can hybrid FDG-PET/CT detect subclinical lymph node metastasis of esophageal cancer appropriately and contribute to radiation treatment planning? A comparison of image-based and pathological findings. International Journal of Clinical Oncology, 2009, 14, 421-425.	2.2	39
34	Tracking errors in a prototype real-time tumour tracking system. Physics in Medicine and Biology, 2004, 49, 5347-5356.	3.0	36
35	Integration of a realâ€ŧime tumor monitoring system into gated proton spotâ€scanning beam therapy: An initial phantom study using patient tumor trajectory data. Medical Physics, 2013, 40, 071729.	3.0	36
36	Efficacy of therapy for advanced hepatocellular carcinoma: Intraâ€arterial 5â€fluorouracil and subcutaneous interferon with imageâ€guided radiation. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 1123-1132.	2.8	34

#	Article	IF	CITATIONS
37	Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Physica Medica, 2016, 32, 874-882.	0.7	34
38	Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Physica Medica, 2014, 30, 809-815.	0.7	32
39	Three-dimensional conformal setup (3D-CSU) of patients using the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems in the treatment room. International Journal of Radiation Oncology Biology Physics, 2004, 60, 607-612.	0.8	30
40	Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: AÂSimulation Study. International Journal of Radiation Oncology Biology Physics, 2017, 97, 173-181.	0.8	29
41	Use of Implanted Markers and Interportal Adjustment With Real-Time Tracking Radiotherapy System to Reduce Intrafraction Prostate Motion. International Journal of Radiation Oncology Biology Physics, 2011, 81, e393-e399.	0.8	28
42	Preliminary analysis for integration of spot-scanning proton beam therapy and real-time imaging and gating. Physica Medica, 2014, 30, 555-558.	0.7	28
43	Selection of external beam radiotherapy approaches for precise and accurate cancer treatment. Journal of Radiation Research, 2018, 59, i2-i10.	1.6	28
44	Biological effect of dose distortion by fiducial markers in spotâ€scanning proton therapy with a limited number of fields: A simulation study. Medical Physics, 2012, 39, 5584-5591.	3.0	26
45	Application of Real-Time Tumor-Tracking and Gated Radiotherapy System for Unresectable Pancreatic Cancer. Yonsei Medical Journal, 2004, 45, 584.	2.2	22
46	Early results of urethral dose reduction and small safety margin in intensity-modulated radiation therapy (IMRT) for localized prostate cancer using a real-time tumor-tracking radiotherapy (RTRT) system. Radiation Oncology, 2014, 9, 118.	2.7	22
47	Optimization of fluoroscopy parameters using pattern matching prediction in the real-time tumor-tracking radiotherapy system. Physics in Medicine and Biology, 2011, 56, 4803-4813.	3.0	21
48	Dose-volume analysis for respiratory toxicity in intrathoracic esophageal cancer patients treated with definitive chemoradiotherapy using extended fields. Journal of Radiation Research, 2013, 54, 1085-1094.	1.6	21
49	Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Communications Biology, 2020, 3, 620.	4.4	21
50	Co-Overexpression of GEP100 and AMAP1 Proteins Correlates with Rapid Local Recurrence after Breast Conservative Therapy. PLoS ONE, 2013, 8, e76791.	2.5	19
51	An analytical doseâ€averaged <scp>LET</scp> calculation algorithm considering the offâ€axis <scp>LET</scp> enhancement by secondary protons for spotâ€scanning proton therapy. Medical Physics, 2018, 45, 3404-3416.	3.0	19
52	Prognostic factors in clinical T1NOMO thoracic esophageal squamous cell carcinoma invading the muscularis mucosa or submucosa. Radiation Oncology, 2016, 11, 84.	2.7	18
53	Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique. Physica Medica, 2016, 32, 932-937.	0.7	18
54	Development and evaluation of a short-range applicator for treating superficial moving tumors with respiratory-gated spot-scanning proton therapy using real-time image guidance. Physics in Medicine and Biology, 2016, 61, 1515-1531.	3.0	18

#	Article	IF	CITATIONS
55	The normal tissue complication probability model-based approach considering uncertainties for the selective use of radiation modality in primary liver cancer patients. Radiotherapy and Oncology, 2019, 135, 100-106.	0.6	18
56	Clinical practice vs. state-of-the-art research and future visions: Report on the 4D treatment planning workshop for particle therapy – Edition 2018 and 2019. Physica Medica, 2021, 82, 54-63.	0.7	18
57	Evaluation of inter-observer variability of bladder boundary delineation on cone-beam CT. Radiation Oncology, 2013, 8, 185.	2.7	16
58	NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies – A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT). Physica Medica, 2016, 32, 1095-1102.	0.7	16
59	Impact of organ motion on volumetric and dosimetric parameters in stomach lymphomas treated with intensityâ€modulated radiotherapy. Journal of Applied Clinical Medical Physics, 2019, 20, 78-86.	1.9	16
60	An integrated service digital network (ISDN)-based international telecommunication between Samsung Medical Center and Hokkaido University using telecommunication helped radiotherapy planning and information system (THERAPIS). Radiotherapy and Oncology, 2000, 56, 121-123.	0.6	15
61	Longitudinal comparison of quality of life after real-time tumor-tracking intensity-modulated radiation therapy and radical prostatectomy in patients with localized prostate cancer. Journal of Radiation Research, 2013, 54, 1095-1101.	1.6	15
62	Potential benefits of adaptive intensityâ€modulated proton therapy in nasopharyngeal carcinomas. Journal of Applied Clinical Medical Physics, 2021, 22, 174-183.	1.9	13
63	Remote verification in radiotherapy using digitally reconstructed radiography (DRR) and portal images: a pilot study. International Journal of Radiation Oncology Biology Physics, 2001, 50, 579-585.	0.8	12
64	Quantitative evaluation of image recognition performance of fiducial markers in real-time tumor-tracking radiation therapy. Physica Medica, 2019, 65, 33-39.	0.7	12
65	Dosimetric comparison between intensity-modulated radiotherapy and standard wedged tangential technique for whole-breast radiotherapy in Asian women with relatively small breast volumes. Radiological Physics and Technology, 2014, 7, 67-72.	1.9	11
66	The urethral position may shift due to urethral catheter placement in the treatment planning for prostate radiation therapy. Radiation Oncology, 2019, 14, 226.	2.7	11
67	Real-Time Tumor-Tracking Radiotherapy and General Stereotactic Body Radiotherapy for Adrenal Metastasis in Patients With Oligometastasis. Technology in Cancer Research and Treatment, 2018, 17, 153303381880998.	1.9	10
68	Modified fast adaptive scatter kernel superposition (mfASKS) correction and its dosimetric impact on CBCTâ€based proton therapy dose calculation. Medical Physics, 2020, 47, 190-200.	3.0	10
69	High Dose Three-Dimensional Conformal Boost Using the Real-Time Tumor Tracking Radiotherapy System in Cervical Cancer Patients Unable to Receive Intracavitary Brachytherapy. Yonsei Medical Journal, 2010, 51, 93.	2.2	9
70	A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system. Journal of Radiation Research, 2015, 56, 186-196.	1.6	9
71	Lambda-Carrageenan Enhances the Effects of Radiation Therapy in Cancer Treatment by Suppressing Cancer Cell Invasion and Metastasis through Racgap1 Inhibition. Cancers, 2019, 11, 1192.	3.7	9
72	Analysis of treatment process time for realâ€timeâ€image gatedâ€spotâ€scanning protonâ€beam therapy (RCPT) system. Journal of Applied Clinical Medical Physics, 2020, 21, 38-49.	1.9	9

#	Article	IF	CITATIONS
73	Analysis of inter- and intra fractional partial bladder wall movement using implanted fiducial markers. Radiation Oncology, 2017, 12, 44.	2.7	8
74	Present developments in reaching an international consensus for a model-based approach to particle beam therapy. Journal of Radiation Research, 2018, 59, i72-i76.	1.6	8
75	Prospective study to evaluate the safety of the world-first spot-scanning dedicated, small 360-degree gantry, synchrotron-based proton beam therapy system. Journal of Radiation Research, 2018, 59, i63-i71.	1.6	8
76	Percutaneous insertion of hepatic fiducial true-spherical markers for real-time adaptive radiotherapy. Minimally Invasive Therapy and Allied Technologies, 2020, 29, 334-343.	1.2	8
77	Rab27b contributes to radioresistance and exerts a paracrine effect via epiregulin in glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa091.	0.7	8
78	Visualizing the urethra by magnetic resonance imaging without usage of a catheter for radiotherapy of prostate cancer. Physics and Imaging in Radiation Oncology, 2021, 18, 1-4.	2.9	8
79	Treatment outcomes of stereotactic body radiation therapy using a realâ€ŧime tumorâ€ŧracking radiotherapy system for hepatocellular carcinomas. Hepatology Research, 2021, 51, 870-879.	3.4	8
80	A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2012, 82, e671-e676.	0.8	7
81	Prospective Phase II Study of Image-guided Local Boost Using a Real-time Tumor-tracking Radiotherapy (RTRT) System for Locally Advanced Bladder Cancer. Japanese Journal of Clinical Oncology, 2014, 44, 28-35.	1.3	6
82	Esophageal motion characteristics in thoracic esophageal cancer: Impact of clinical stage T4 versus stages T1-T3. Advances in Radiation Oncology, 2016, 1, 222-229.	1.2	5
83	A simulation study on the dosimetric benefit of real-time motion compensation in spot-scanning proton therapy for prostate. Journal of Radiation Research, 2017, 58, 591-597.	1.6	5
84	Clinical experience of craniospinal intensity-modulated spot-scanning proton therapy using large fields for central nervous system medulloblastomas and germ cell tumors in children, adolescents, and young adults. Journal of Radiation Research, 2019, 60, 527-537.	1.6	5
85	A Literature Review of Proton Beam Therapy for Prostate Cancer in Japan. Journal of Clinical Medicine, 2019, 8, 48.	2.4	5
86	Analysis of acute-phase toxicities of intensity-modulated proton therapy using a model-based approach in pharyngeal cancer patients. Journal of Radiation Research, 2021, 62, 329-337.	1.6	5
87	Assessing the uncertainty in a normal tissue complication probability difference (â^†NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy. Journal of Radiation Research, 2018, 59, i50-i57.	1.6	4
88	Difference in LETâ€based biological doses between IMPT optimization techniques: Robust and PTVâ€based optimizations. Journal of Applied Clinical Medical Physics, 2020, 21, 42-50.	1.9	4
89	The impact of dose delivery time on biological effectiveness in proton irradiation with various biological parameters. Medical Physics, 2020, 47, 4644-4655.	3.0	4
90	Validation of dose distribution for liver tumors treated with real-time-image gated spot-scanning proton therapy by log data based dose reconstruction. Journal of Radiation Research, 2021, 62, 626-633.	1.6	4

#	Article	IF	CITATIONS
91	Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy. Journal of Radiation Research, 2021, 62, 926-933.	1.6	4
92	Realâ€time CT image generation based on voxelâ€byâ€voxel modeling of internal deformation by utilizing the displacement of fiducial markers. Medical Physics, 2021, 48, 5311-5326.	3.0	4
93	Dose–Volume Analysis of Stereotactic Irradiation for Lung Tumors. Journal of Radiosurgery, 1999, 2, 239-245.	0.1	3
94	Investigation of energy absorption by clustered gold nanoparticles. Nuclear Instruments & Methods in Physics Research B, 2018, 429, 34-41.	1.4	3
95	Quantitative analysis of treatments using realâ€time image gated spotâ€scanning with synchrotronâ€based proton beam therapy system log data. Journal of Applied Clinical Medical Physics, 2020, 21, 10-19.	1.9	3
96	The updated outcomes of bladder-preserving trimodal therapy using a real-time tumor-tracking radiotherapy system for patients with muscle-invasive bladder cancer. Japanese Journal of Clinical Oncology, 2020, 50, 609-616.	1.3	3
97	Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning. Physics in Medicine and Biology, 2021, 66, 065029.	3.0	3
98	Baseline Shift of Intrafractional Lung Tumor Motion in Real-Time Tumor-Tracking Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, S67.	0.8	2
99	Use of 3-D Contrast-Enhanced Ultrasound to Evaluate Tumor Microvasculature After Nanoparticle-Mediated Modulation. Ultrasound in Medicine and Biology, 2020, 46, 369-376.	1.5	2
100	Construction of a detachable artificial trachea model for three age groups for use in an endotracheal suctioning training environment simulator. PLoS ONE, 2021, 16, e0249010.	2.5	2
101	Assessment of the confidence interval in the multivariable normal tissue complication probability model for predicting radiation-induced liver disease in primary liver cancer. Journal of Radiation Research, 2021, 62, 483-493.	1.6	2
102	Cost-effectiveness analysis using lifetime attributable risk of proton beam therapy for pediatric medulloblastoma in Japan. Journal of Radiation Research, 2021, , .	1.6	2
103	A treatment planning study of urethra-sparing intensity-modulated proton therapy for localized prostate cancer. Physics and Imaging in Radiation Oncology, 2021, 20, 23-29.	2.9	2
104	Dosimetric advantages of daily adaptive strategy in IMPT for highâ€risk prostate cancer. Journal of Applied Clinical Medical Physics, 2022, , e13531.	1.9	2
105	Decreasing Acute and Late Toxicity Using Urethral Dose Reduction and Smaller Safety Margin Around CTV for Prostate Cancer Intensity Modulated Radiation Therapy (IMRT) With a Real-time Tumor-tracking (RTRT) System. International Journal of Radiation Oncology Biology Physics, 2012, 84, S181	0.8	1
106	Dynamic gating window technique for the reduction of dosimetric error in respiratoryâ€gated spotâ€scanning particle therapy: An initial phantom study using patient tumor trajectory data. Journal of Applied Clinical Medical Physics, 2020, 21, 13-21.	1.9	1
107	MO-F-213AB-04: Biological Effect of Dose Shadowing by Fiducial Markers in Spot Scanning Proton Therapy with a Limited Number of Fields. Medical Physics, 2012, 39, 3872-3872.	3.0	1
108	SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking. Medical Physics, 2014, 41, 111-112.	3.0	1

#	Article	IF	CITATIONS
109	Real-time monitoring of a digestive-tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. International Journal of Radiation Oncology Biology Physics, 2004, 60, S414-S414.	0.8	0
110	Esophageal carcinoma treated with nerve-sparing operation, intra-operative radiotherapy, and postoperative external radiotherapy. International Journal of Radiation Oncology Biology Physics, 2004, 60, S426-S426.	0.8	0
111	2717. International Journal of Radiation Oncology Biology Physics, 2006, 66, S608.	0.8	0
112	Feasibility Study of Real-Time Tumor-Tracking Radiotherapy for Adrenal Tumors: Three-Dimensional Movement of Internal Fiducial Gold Markers Measured in Supine and Prone Patient Positions. International Journal of Radiation Oncology Biology Physics, 2007, 69, S675.	0.8	0
113	A New Positron Emission Tomography with Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients with Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2008, 72, S589-S590.	0.8	0
114	RTRT-based Evaluation of the Effectiveness of the Stereotactic Body Frame in Reducing Intrafraction Organ Motion. International Journal of Radiation Oncology Biology Physics, 2008, 72, S610-S611.	0.8	0
115	Can the Real-time Tumor-tracking Radiotherapy Give the Planned Dose to the Tumor? DVH Analysis Based on Measured Real-time Tracking Data. International Journal of Radiation Oncology Biology Physics, 2009, 75, S590-S591.	0.8	0
116	Improvement of tracking accuracy and stability by recursive image processing in real-time tumor-tracking radiotherapy system. , 2012, , .		0
117	Stereotactic Body Radiation Therapy (SBRT) Using Real-time Tracking Radiation Therapy (RTRT) System for Patients With Lung Cancer Aged 80+. International Journal of Radiation Oncology Biology Physics, 2012, 84, S575.	0.8	0
118	Interfractional Setup Error and Intrafractional Bladder Motion During Radiation Therapy for Bladder Tumors. International Journal of Radiation Oncology Biology Physics, 2012, 84, S769.	0.8	0
119	The Role of Spot Scanning Proton Therapy in the Treatment of Large Abdominal Tumors: A Comparative Planning Study of Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2012, 84, S327-S328.	0.8	0
120	Realization of the Cone Beam CT by FPDs That Mounted on the Spot-Scanning Dedicated Proton Beam Gantry. International Journal of Radiation Oncology Biology Physics, 2014, 90, S920.	0.8	0
121	NTCP Modeling Analysis of Acute Hematologic Toxicity in Whole-Pelvic Radiation Therapy for Gynecologic Malignancies: A Dosimetric Comparison of IMRT and Spot-Scanning Proton Therapy. International Journal of Radiation Oncology Biology Physics, 2015, 93, E254.	0.8	0
122	Radiation Dose to Internal Mammary Lymph Node in Standard Tangential Breast Irradiation. International Journal of Radiation Oncology Biology Physics, 2016, 96, E17-E18.	0.8	0
123	Intensity-Modulated Proton Therapy with Dose Painting based on Hypoxia Imaging for Nasopharyngeal Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, e378.	0.8	0
124	Analysis of Beam Delivery Times and Dose Rates for the Treatment of Mobile Tumors Using Real Time Image Gated Spot-Scanning Proton Beam Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 102, S182-S183.	0.8	0
125	Prediction of liver Dmean for proton beam therapy using deep learning and contour-based data augmentation. Journal of Radiation Research, 2021, , .	1.6	0
126	SU-E-T-448: Effectiveness of An In-Gate Beam Tracking Method in Spot-Scanning Proton Therapy. Medical Physics, 2013, 40, 308-308.	3.0	0

#	Article	IF	CITATIONS
127	WE-D-17A-03: Improvement of Accuracy of Spot-Scanning Proton Beam Delivery for Liver Tumor by Real-Time Tumor-Monitoring and Gating System: A Simulation Study. Medical Physics, 2014, 41, 497-497.	3.0	0
128	Future of Stereotactic Irradiation $\hat{a} \in $ Dose Composition Radiotherapy (DCRT). , 2015, , 239-250.		0
129	Real Time Tracking Radiotherapy (RTRT) System. , 2015, , 217-224.		0
130	Bladder-preserving therapy using a real-time tumor-tracking radiotherapy system for muscle-invasive bladder cancer Journal of Clinical Oncology, 2019, 37, 364-364.	1.6	0
131	RONC-16. PROTON BEAM THERAPY FOR PATIENTS WITH INTRACRANIAL EPENDYMOMA UNDER 3 YEARS OLD: INITIAL CLINICAL OUTCOMES. Neuro-Oncology, 2020, 22, iii458-iii458.	1.2	0
132	Are simple verbal instructions sufficient to ensure that bladder volume does not deteriorate prostate position reproducibility during spot scanning proton therapy?. BJR Open, 2021, 3, .	0.6	0