
Suresh Mahalingam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8685077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chikungunya: a re-emerging virus. Lancet, The, 2012, 379, 662-671.	6.3	506
2	Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infectious Diseases, The, 2010, 10, 712-722.	4.6	334
3	Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infectious Diseases, The, 2017, 17, e107-e117.	4.6	302
4	Fc receptors in antibodyâ€dependent enhancement of viral infections. Immunological Reviews, 2015, 268, 340-364.	2.8	202
5	Characterization of Ross River Virus Tropism and Virus-Induced Inflammation in a Mouse Model of Viral Arthritis and Myositis. Journal of Virology, 2006, 80, 737-749.	1.5	185
6	Comorbidities in SARS-CoV-2 Patients: a Systematic Review and Meta-Analysis. MBio, 2021, 12, .	1.8	184
7	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	2.6	163
8	Macrophageâ€Derived Proinflammatory Factors Contribute to the Development of Arthritis and Myositis after Infection with an Arthrogenic Alphavirus. Journal of Infectious Diseases, 2008, 197, 1585-1593.	1.9	124
9	Protection From Arthritis and Myositis in a Mouse Model of Acute Chikungunya Virus Disease by Bindarit, an Inhibitor of Monocyte Chemotactic Protein-1 Synthesis. Journal of Infectious Diseases, 2011, 204, 1026-1030.	1.9	124
10	Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6040-6045.	3.3	107
11	Hendra virus: an emerging paramyxovirus in Australia. Lancet Infectious Diseases, The, 2012, 12, 799-807.	4.6	104
12	Bindarit, an Inhibitor of Monocyte Chemotactic Protein Synthesis, Protects against Bone Loss Induced by Chikungunya Virus Infection. Journal of Virology, 2015, 89, 581-593.	1.5	98
13	RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathogens, 2017, 13, e1006155.	2.1	98
14	Inhibition of Arginase I Activity by RNA Interference Attenuates IL-13-Induced Airways Hyperresponsiveness. Journal of Immunology, 2006, 177, 5595-5603.	0.4	94
15	The Interferon-Inducible Chemokines MuMig and Crg-2 Exhibit Antiviral Activity In Vivo. Journal of Virology, 1999, 73, 1479-1491.	1.5	93
16	Complement Contributes to Inflammatory Tissue Destruction in a Mouse Model of Ross River Virus-Induced Disease. Journal of Virology, 2007, 81, 5132-5143.	1.5	92
17	An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. Journal of General Virology, 2017, 98, 2413-2420.	1.3	88
18	Specific Ablation of Antiviral Gene Expression in Macrophages by Antibody-Dependent Enhancement of Ross River Virus Infection. Journal of Virology, 2000, 74, 8376-8381.	1.5	85

SURESH MAHALINGAM

#	Article	IF	CITATIONS
19	Differential Induction of Type I Interferon Responses in Myeloid Dendritic Cells by Mosquito and Mammalian-Cell-Derived Alphaviruses. Journal of Virology, 2007, 81, 237-247.	1.5	85
20	Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate. Journal of General Virology, 2017, 98, 2712-2724.	1.3	84
21	Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-ÂB) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13819-13824.	3.3	82
22	Amelioration of alphavirusâ€induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis and Rheumatism, 2009, 60, 2513-2523.	6.7	82
23	Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nature Microbiology, 2017, 2, 1435-1445.	5.9	77
24	Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12048-12053.	3.3	76
25	Review: Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis and Rheumatology, 2018, 70, 484-495.	2.9	75
26	Cytotoxic T-Lymphocyte Epitope Vaccination Protects against Human Metapneumovirus Infection and Disease in Mice. Journal of Virology, 2006, 80, 2034-2044.	1.5	74
27	The Medicinal Chemistry of Dengue Fever. Journal of Medicinal Chemistry, 2009, 52, 7911-7926.	2.9	71
28	Interleukin 6, RANKL, and Osteoprotegerin Expression by Chikungunya Virus-Infected Human Osteoblasts. Journal of Infectious Diseases, 2012, 206, 455-457.	1.9	71
29	Chikungunya Virus: Emerging Targets and New Opportunities for Medicinal Chemistry. Journal of Medicinal Chemistry, 2014, 57, 1147-1166.	2.9	71
30	The Molecular and Cellular Aspects of Arthritis Due to Alphavirus Infections. Annals of the New York Academy of Sciences, 2007, 1102, 96-108.	1.8	68
31	Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends in Microbiology, 2015, 23, 35-43.	3.5	58
32	Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis. PLoS Pathogens, 2012, 8, e1002586.	2.1	55
33	The immunobiology of viral arthritides. , 2009, 124, 301-308.		51
34	Pentosan Polysulfate: a Novel Glycosaminoglycan-Like Molecule for Effective Treatment of Alphavirus-Induced Cartilage Destruction and Inflammatory Disease. Journal of Virology, 2015, 89, 8063-8076.	1.5	51
35	Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLoS Pathogens, 2018, 14, e1006835.	2.1	50
36	Pentraxins and Collectins: Friend or Foe during Pathogen Invasion?. Trends in Microbiology, 2015, 23, 799-811.	3.5	49

SURESH MAHALINGAM

#	Article	IF	CITATIONS
37	Sphingosine kinase 1 in viral infections. Reviews in Medical Virology, 2013, 23, 73-84.	3.9	42
38	Chikungunya virus and arthritic disease. Lancet Infectious Diseases, The, 2014, 14, 789-790.	4.6	41
39	Macrophage Migration Inhibitory Factor Receptor CD74 Mediates Alphavirusâ€Induced Arthritis and Myositis in Murine Models of Alphavirus Infection. Arthritis and Rheumatism, 2013, 65, 2724-2736.	6.7	40
40	Development of vaccines for SARS-CoV-2. F1000Research, 2020, 9, 991.	0.8	39
41	Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. , 2013, 137, 266-282.		38
42	Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infectious Diseases, The, 2021, 21, e123-e133.	4.6	38
43	Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design. MBio, 2017, 8, .	1.8	37
44	Lower temperatures reduce type I interferon activity and promote alphaviral arthritis. PLoS Pathogens, 2017, 13, e1006788.	2.1	37
45	Disease exacerbation by etanercept in a mouse model of alphaviral arthritis and myositis. Arthritis and Rheumatism, 2011, 63, 488-491.	6.7	34
46	Effects of an In-Frame Deletion of the <i>6k</i> Gene Locus from the Genome of Ross River Virus. Journal of Virology, 2016, 90, 4150-4159.	1.5	34
47	Dual Proinflammatory and Antiviral Properties of Pulmonary Eosinophils in Respiratory Syncytial Virus Vaccine-Enhanced Disease. Journal of Virology, 2015, 89, 1564-1578.	1.5	33
48	Human Metapneumovirus Establishes Persistent Infection in the Lungs of Mice and Is Reactivated by Glucocorticoid Treatment. Journal of Virology, 2009, 83, 6837-6848.	1.5	32
49	Role of Pentraxin 3 in Shaping Arthritogenic Alphaviral Disease: From Enhanced Viral Replication to Immunomodulation. PLoS Pathogens, 2015, 11, e1004649.	2.1	32
50	Chikungunya: vaccines and therapeutics. F1000Research, 2017, 6, 2114.	0.8	31
51	Mutations in nsP1 and PE2 are critical determinants of Ross River virus-induced musculoskeletal inflammatory disease in a mouse model. Virology, 2011, 410, 216-227.	1.1	30
52	MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9) Replication. PLoS ONE, 2016, 11, e0155104.	1.1	29
53	Enhanced resistance in STAT6-deficient mice to infection with ectromelia virus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6812-6817.	3.3	28
54	Mouse models of alphavirus-induced inflammatory disease. Journal of General Virology, 2015, 96, 221-238.	1.3	28

#	Article	IF	CITATIONS
55	Human Metapneumovirus Infection in Chronic Obstructive Pulmonary Disease: Impact of Glucocorticosteroids and Interferon. Journal of Infectious Diseases, 2017, 215, 1536-1545.	1.9	27
56	Pulmonary infection of mice with human metapneumovirus induces local cytotoxic T-cell and immunoregulatory cytokine responses similar to those seen with human respiratory syncytial virus. Journal of General Virology, 2010, 91, 1302-1310.	1.3	25
57	Dengue vaccine efficacy trial: does interference cause failure?. Lancet Infectious Diseases, The, 2013, 13, 191-192.	4.6	25
58	Call to Action for Dengue Vaccine Failure. Emerging Infectious Diseases, 2013, 19, 1335-1337.	2.0	25
59	Antibody-dependent enhancement and vaccine development. Expert Review of Vaccines, 2006, 5, 409-412.	2.0	24
60	Downregulation of Interferon-β in Antibody-Dependent Enhancement of Dengue Viral Infections of Human Macrophages Is Dependent on Interleukin-6. Journal of Infectious Diseases, 2011, 204, 489-491.	1.9	23
61	Identification and Characterization of a Ross River Virus Variant That Grows Persistently in Macrophages, Shows Altered Disease Kinetics in a Mouse Model, and Exhibits Resistance to Type I Interferon. Journal of Virology, 2011, 85, 5651-5663.	1.5	23
62	Role of envelope N-linked glycosylation in Ross River virus virulence and transmission. Journal of General Virology, 2016, 97, 1094-1106.	1.3	20
63	Small tumor necrosis factor receptor biologics inhibit the tumor necrosis factor-p38 signalling axis and inflammation. Nature Communications, 2018, 9, 1365.	5.8	18
64	Methotrexate Treatment Causes Early Onset of Disease in a Mouse Model of Ross River Virus-Induced Inflammatory Disease through Increased Monocyte Production. PLoS ONE, 2013, 8, e71146.	1.1	17
65	Inhibition of Interleukinâ€1β Signaling by Anakinra Demonstrates a Critical Role of Bone Loss in Experimental Arthritogenic Alphavirus Infections. Arthritis and Rheumatology, 2019, 71, 1185-1190.	2.9	17
66	The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. MBio, 2022, 13, e0068322.	1.8	17
67	Emergent chikungunya virus and arthritis in the Americas. Lancet Infectious Diseases, The, 2015, 15, 1007-1008.	4.6	16
68	Modulation of Monocyte-Driven Myositis in Alphavirus Infection Reveals a Role for CX ₃ CR1 ⁺ Macrophages in Tissue Repair. MBio, 2020, 11, .	1.8	16
69	Molecular and cellular mechanisms in the viral exacerbation of asthma. Microbes and Infection, 2008, 10, 1014-1023.	1.0	15
70	Liposomal Delivery of the RNA Genome of a Live-Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose. Frontiers in Immunology, 2020, 11, 304.	2.2	15
71	Decreased Virulence of Ross River Virus Harboring a Mutation in the First Cleavage Site of Nonstructural Polyprotein Is Caused by a Novel Mechanism Leading to Increased Production of Interferon-Inducing RNAs. MBio, 2018, 9, .	1.8	13
72	Zika's passage to India. Lancet Infectious Diseases, The, 2019, 19, 469-470.	4.6	12

SURESH MAHALINGAM

#	Article	IF	CITATIONS
73	Attenuation and Stability of CHIKV-NoLS, a Live-Attenuated Chikungunya Virus Vaccine Candidate. Vaccines, 2019, 7, 2.	2.1	12
74	Basic insights into Zika virus infection of neuroglial and brain endothelial cells. Journal of General Virology, 2020, 101, 622-634.	1.3	12
75	Characterization of Barmah Forest virus pathogenesis in a mouse model. Journal of General Virology, 2014, 95, 2146-2154.	1.3	11
76	Targeting the proâ€inflammatory factor CCL2 (MCPâ€1) with Bindarit for influenza A (H7N9) treatment. Clinical and Translational Immunology, 2017, 6, e135.	1.7	11
77	Zika enhancement: a reality check. Lancet Infectious Diseases, The, 2017, 17, 686-688.	4.6	11
78	Enhancement of Zika Infection by Dengue Virus–Specific Antibody Is Associated With Low Levels of Antiviral Factors. Journal of Infectious Diseases, 2017, 216, 612-614.	1.9	11
79	The genetics of alphaviruses. Future Virology, 2011, 6, 1407-1422.	0.9	10
80	Zika Virus: Mechanisms of Infection During Pregnancy. Trends in Microbiology, 2017, 25, 701-702.	3.5	9
81	Infectious Clones Produce SARS-CoV-2 That Causes Severe Pulmonary Disease in Infected K18-Human ACE2 Mice. MBio, 2021, 12, .	1.8	9
82	Heterogeneity of clinical isolates of chikungunya virus and its impact on the responses of primary human fibroblast-like synoviocytes. Journal of General Virology, 2018, 99, 525-535.	1.3	9
83	Osteoblasts from osteoarthritis patients show enhanced susceptibility to Ross River virus infection associated with delayed type I interferon responses. Virology Journal, 2014, 11, 189.	1.4	8
84	Interleukin-17 Contributes to Chikungunya Virus-Induced Disease. MBio, 2022, 13, e0028922.	1.8	8
85	Applications of Animal Models of Infectious Arthritis in Drug Discovery:A focus on Alphaviral Disease. Current Drug Targets, 2011, 12, 1024-1036.	1.0	7
86	Changes in complement alternative pathway components, factor B and factor H during dengue virus infection in the AG129 mouse. Journal of General Virology, 2021, 102, .	1.3	7
87	Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import. Viruses, 2017, 9, 306.	1.5	6
88	Approaches to the treatment of disease induced by chikungunya virus. Indian Journal of Medical Research, 2013, 138, 762-5.	0.4	6
89	Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLoS Pathogens, 2022, 18, e1010185.	2.1	6
90	Salivary Transmission of the Chikungunya Arbovirus. Trends in Microbiology, 2016, 24, 86-87.	3.5	5

Suresh Mahalingam

#	Article	IF	CITATIONS
91	Arthropod-borne arthritides. Best Practice and Research in Clinical Rheumatology, 2015, 29, 259-274.	1.4	4
92	Identification of Natural Molecular Determinants of Ross River Virus Type I Interferon Modulation. Journal of Virology, 2020, 94, .	1.5	4
93	IL-3 and CSF-1 Interact to Promote Generation of CD11c+ IL-10-Producing Macrophages. PLoS ONE, 2014, 9, e95208.	1.1	3
94	Fighting back against chikungunya. Lancet Infectious Diseases, The, 2015, 15, 488-489.	4.6	3
95	Mechanisms of Chikungunya virus disease informed by Ross River virus research. Future Virology, 2008, 3, 509-511.	0.9	2
96	Dengue virus and host antibody: a dangerous balancing act. Lancet Infectious Diseases, The, 2014, 14, 783-784.	4.6	2
97	Mouse Models of Chikungunya Virus. Methods in Molecular Biology, 2016, 1426, 211-224.	0.4	2
98	Altered Spatial and Temporal Gait Parameters in Mice Infected with Ross River Virus. MSphere, 2021, 6, e0065921.	1.3	2
99	Recent developments in virology by Australian researchers. Microbiology Australia, 2015, 36, 38.	0.1	0
100	The MIF-CD74 Inflammatory Axis in Alphaviral Infection. , 2017, , 175-187.		0
101	Chikungunya: treatments, opportunities and possibilities. Microbiology Australia, 2018, 39, 76.	0.1	0
102	Analysis of Functional Virus-generated PAMP RNAs Using IFNα/β ELISA Assay. Bio-protocol, 2019, 9, e3282.	0.2	0
103	TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF)-Dependent Antiviral Responses Protect Mice against Ross River Virus Disease. MBio, 2022, , e0336321.	1.8	0