Antonio O T Patrocinio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684829/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1954-1965.	15.6	788
2	Structural characterization of Ag-doped TiO ₂ with enhanced photocatalytic activity. RSC Advances, 2015, 5, 103752-103759.	3.6	128
3	Making solar fuels by artificial photosynthesis. Pure and Applied Chemistry, 2011, 83, 749-768.	1.9	123
4	Light driven trans-to-cis isomerization of stilbene-like ligands in fac-[Re(CO)3(NN)(trans-L)]+ and luminescence of their photoproducts. Coordination Chemistry Reviews, 2006, 250, 1669-1680.	18.8	122
5	Layer-by-Layer TiO ₂ /WO ₃ Thin Films As Efficient Photocatalytic Self-Cleaning Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 16859-16866.	8.0	99
6	XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Applied Surface Science, 2008, 254, 1874-1879.	6.1	83
7	Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 23-27.	3.9	76
8	Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of [Ru(bpy) ₂ ((4,4′â€PO ₃ H ₂) ₂ bpy)] ²⁺ in TiO ₂ Nanoparticle Films in Aqueous Environments. ChemSusChem, 2011, 4, 216-227.	6.8	71
9	Charge carrier dynamics and photocatalytic behavior of TiO ₂ nanopowders submitted to hydrothermal or conventional heat treatment. RSC Advances, 2015, 5, 70536-70545.	3.6	61
10	New insights into the plasmonic enhancement for photocatalytic H ₂ production by Cu–TiO ₂ upon visible light illumination. Physical Chemistry Chemical Physics, 2018, 20, 5264-5273.	2.8	60
11	Photoswitches and Luminescent Rigidity Sensors Based onfac-[Re(CO)3(Me4phen)(L)]+. Inorganic Chemistry, 2008, 47, 10851-10857.	4.0	58
12	Excited-State Dynamics in <i>fac-</i> [Re(CO) ₃ (Me ₄ phen)(L)] ⁺ . Journal of Physical Chemistry A, 2010, 114, 12129-12137.	2.5	56
13	Recent Advances in Niobium-Based Materials for Photocatalytic Solar Fuel Production. Catalysts, 2020, 10, 126.	3.5	55
14	Synergism between n-type WO3 and p-type δ-FeOOH semiconductors: High interfacial contacts and enhanced photocatalysis. Applied Catalysis B: Environmental, 2015, 165, 579-588.	20.2	54
15	A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting. Scientific Reports, 2016, 6, 31406.	3.3	54
16	Efficient and low cost devices for solar energy conversion: Efficiency and stability of some natural-dye-sensitized solar cells. Synthetic Metals, 2009, 159, 2342-2344.	3.9	53
17	Oxygen Vacancies Promoted Piezoelectricity toward Piezo-Photocatalytic Decomposition of Tetracycline over SrBi ₄ Ti ₄ O ₁₅ . ACS ES&T Engineering, 2022, 2, 1365-1375.	7.6	50
18	Role of Polyelectrolyte for Layer-by-Layer Compact TiO ₂ Films in Efficiency Enhanced Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17954-17959.	3.1	47

#	Article	IF	CITATIONS
19	Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 1-20.	11.6	36
20	Solid State Molecular Device Based on a Rhenium(I) Polypyridyl Complex Immobilized on TiO ₂ Films. Inorganic Chemistry, 2013, 52, 5889-5896.	4.0	35
21	Contrasting photophysical properties of rhenium(<scp>i</scp>) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand. Dalton Transactions, 2016, 45, 11688-11698.	3.3	35
22	Unraveling the photocatalytic properties of TiO2/WO3 mixed oxidesâ€. Photochemical and Photobiological Sciences, 2019, 18, 2469-2483.	2.9	35
23	Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production. International Journal of Photoenergy, 2019, 2019, 1-23.	2.5	35
24	Photocatalytic CO ₂ Reduction by Re(I) Polypyridyl Complexes Immobilized on Niobates Nanoscrolls. ACS Sustainable Chemistry and Engineering, 2018, 6, 6073-6083.	6.7	34
25	Photoelectrochemical hydrogen production from water splitting using heterostructured nanowire arrays of Bi2O3/BiAl oxides as a photocathode. Solar Energy Materials and Solar Cells, 2019, 194, 276-284.	6.2	28
26	Application of EPR Spectroscopy in TiO2 and Nb2O5 Photocatalysis. Catalysts, 2021, 11, 1514.	3.5	28
27	On the energy transfer from a polymer host to the rhenium(I) complex in OLEDs. Synthetic Metals, 2009, 159, 2315-2317.	3.9	25
28	Characterization of a highly efficient N-doped TiO ₂ photocatalyst prepared via factorial design. New Journal of Chemistry, 2016, 40, 7846-7855.	2.8	23
29	Effect of Gd3+ doping on structural and photocatalytic properties of ZnO obtained by facile microwave-hydrothermal method. SN Applied Sciences, 2019, 1, 1.	2.9	23
30	High Water Oxidation Performance of Wâ€Doped BiVO ₄ Photoanodes Coupled to V ₂ O ₅ Rods as a Photoabsorber and Hole Carrier. Solar Rrl, 2018, 2, 1800089.	5.8	22
31	The photophysics of fac-[Re(CO)3(NN)(bpa)]+ complexes: a theoretical/experimental study. Photochemical and Photobiological Sciences, 2014, 13, 1213-1224.	2.9	19
32	New layer-by-layer Nb ₂ O ₅ –TiO ₂ film as an effective underlayer in dye-sensitised solar cells. RSC Advances, 2014, 4, 10310-10316.	3.6	19
33	Photochemistry of <i>fac-</i> [Re(CO) ₃ (dcbH ₂)(<i>trans</i> -stpy)] ⁺ : New Insights on the Isomerization Mechanism of Coordinated Stilbene-like Ligands. Inorganic Chemistry, 2018, 57, 2022 2041	4.0	19
34	Opto-electrical properties of single layer flexible electroluminescence device with ruthenium complex. Journal of Non-Crystalline Solids, 2008, 354, 2571-2574.	3.1	18
35	Em busca da sustentabilidade: células solares sensibilizadas por extratos naturais. Quimica Nova, 2010, 33, 574-578.	0.3	17
36	Influence of the Sol-Gel pH Process and Compact Film on the Efficiency of -Based Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-7.	2.5	17

#	Article	IF	CITATIONS
37	Effect of Er 3+ ions on the phase formation and properties of In 2 O 3 nanostructures crystallized upon microwave heating. Journal of Solid State Chemistry, 2017, 249, 58-63.	2.9	14
38	Quenching Effects of Graphene Oxides on the Fluorescence Emission and Reactive Oxygen Species Generation of Chloroaluminum Phthalocyanine. Journal of Physical Chemistry A, 2018, 122, 6842-6851.	2.5	14
39	Cu(I) complexes with thiosemicarbazides derived from p-toluenesulfohydrazide: Structural, luminescence and biological studies. Polyhedron, 2018, 155, 170-179.	2.2	14
40	Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls. Catalysis Today, 2019, 326, 60-67.	4.4	14
41	Nb2O5 dye-sensitized solar cells. , 2019, , 287-322.		14
42	Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Transactions, 2020, 49, 16488-16497.	3.3	13
43	Development and characterization of lightâ€emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2057-2060.	1.8	12
44	Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1469-1493.	2.8	10
45	Influence of the preparation conditions on the morphology and photocatalytic performance Pt-modified hexaniobate composites. Journal of Physics Condensed Matter, 2019, 31, 394001.	1.8	9
46	Spectroscopic characterization of a new Re(<scp>i</scp>) tricarbonyl complex with a thiosemicarbazone derivative: towards sensing and electrocatalytic applications. Dalton Transactions, 2020, 49, 16368-16379.	3.3	8
47	Photoinduced H2 Evolution by Hexaniobate Sheets Grafted with Metal Ions: The Fate of Photogenerated Carriers. ACS Applied Energy Materials, 2021, 4, 3681-3692.	5.1	8
48	Efficient Mineralization of Paracetamol Using the Nanocomposite TiO ₂ /Zn(II) Phthalocyanine as Photocatalyst. Journal of the Brazilian Chemical Society, 2016, , .	0.6	7
49	Innovative multifunctional hybrid photoelectrode design based on a ternary heterojunction with super-enhanced efficiency for artificial photosynthesis. Scientific Reports, 2020, 10, 10669.	3.3	4
50	On the influence of hydrothermal treatment pH on the performance of Bi2WO6 as photocatalyst in the glycerol photoreforming. Photochemical and Photobiological Sciences, 2022, 21, 1659-1675.	2.9	4
51	Mechanistic Investigation of the Aerobic Oxidation of 2-pyridylacetate Coordinated to a Ru(II) Polypyridyl Complex. Dalton Transactions, 2021, 50, 15248-15259.	3.3	3
52	REDUÇÃO DE CO2 EM HIDROCARBONETOS E OXIGENADOS: FUNDAMENTOS, ESTRATÉGIAS E DESAFIOS. Quimica Nova, 0, , .	0.3	3
53	Rapid Preparation of (BiO)2CO3Nanosheets by Microwave-Assisted Hydrothermal Method with Promising Photocatalytic Activity Under UV-Vis Light. Journal of the Brazilian Chemical Society, 2015, ,	0.6	3
54	Heterojunction Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-2.	2.5	2

#	Article	IF	CITATIONS
55	<i>fac</i> -[1,2-Bis(pyridin-4-yl)ethane-l² <i>N</i>]tricarbonyl(1,10-phenanthroline-l² ² <i>N</i> , <i>Nhexafluoridophosphate acetonitrile monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m278-m279.</i>	'i>′)rhe 0.2	nium(l) 2
56	Influence of the Protonatable Site in the Photo-Induced Proton-Coupled Electron Transfer between Rhenium(I) Polypyridyl Complexes and Hydroquinone. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
57	Photophysical and DFT Studies of Cationic Ag(I) Complexes with Thiosemicarbazides Derived from <i>p</i> â€₹oluenesulfohydrazide. ChemistrySelect, 2018, 3, 2108-2114.	1.5	2
58	Aluminum oxides as alternative building blocks for efficient layer-by-layer blocking layers in dye-sensitized solar cells. Journal of Physics Condensed Matter, 2020, 33, 055002.	1.8	2
59	Efficient Photocatalytic H ₂ Evolution by Hexaniobate Nanosheets Grafted with Copper Nanoclusters. ChemPhotoChem, 2022, 6, .	3.0	2
60	Highly Stable Au/Hexaniobate Nanocomposite Prepared by a Green Intercalation Method for Photoinduced H ₂ Evolution Applications. ACS Applied Energy Materials, 2022, 5, 8371-8380.	5.1	2
61	Intramolecular C(sp ²)–C (sp ²) bond formation between phenanthroline and β-diketone thiosemicarbazones in Pt ^{II} complexes: crystal structures and computational studies. Dalton Transactions, 2020, 49, 9564-9567.	3.3	1
62	COORDINATION CHEMISTRY AND SOLAR FUEL PRODUCTION. Quimica Nova, 2014, , .	0.3	1
63	Células solares sensibilizadas por pontos quânticos. Quimica Nova, 0, , .	0.3	0
64	INFLUÊNCIA DA RIGIDEZ DO MEIO NA CINÉTICA DO FOTOCROMISMO DE DITIZONATOS METÃLICOS. Quimic Nova, 2018, , .	²⁸ 0.3	0
65	Temperature Dependent Emission Properties of ReI Tricarbonyl Complexes with Dipyrido-Quinoxaline and Phenazine Ligands. Journal of the Brazilian Chemical Society, 0, , .	0.6	0