Olivier A E Sparagano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684824/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatio-temporal distribution of identified tick species from small and large ruminants of Pakistan. Biologia (Poland), 2022, 77, 1563-1573.	1.5	4
2	Diversity and Distribution of Theileria Species and Their Vectors in Ruminants from India, Pakistan and Bangladesh. Diversity, 2022, 14, 82.	1.7	9
3	A Review on the Marek's Disease Outbreak and Its Virulence-Related meq Genovariation in Asia between 2011 and 2021. Animals, 2022, 12, 540.	2.3	13
4	The Symbiotic Continuum Within Ticks: Opportunities for Disease Control. Frontiers in Microbiology, 2022, 13, 854803.	3.5	18
5	Morphological identification and molecular characterization of economically important ticks (Acari:) Tj ETQq1 1	0.784314 2.0	rg&T /Overlo
6	A Review of Zoonotic Babesiosis as an Emerging Public Health Threat in Asia. Pathogens, 2022, 11, 23.	2.8	11
7	The pests of a pest: A systematic review of ectoparasitic fauna among synanthropic rodents in the 21st century with meta-analysis. Acta Tropica, 2021, 215, 105802.	2.0	4
8	An Epidemiological Survey Regarding Ticks and Tick-Borne Diseases among Livestock Owners in Punjab, Pakistan: A One Health Context. Pathogens, 2021, 10, 361.	2.8	18
9	Knowledge, attitude, and practices associated with brucellosis among livestock owners and its public health impact in Punjab, Pakistan. Biologia (Poland), 2021, 76, 2921-2929.	1.5	6
10	Did the COVID-19 Pandemic Spark a Public Interest in Pet Adoption?. Frontiers in Veterinary Science, 2021, 8, 647308.	2.2	56
11	Editorial: Neglected and Under-Researched Parasitic Diseases of Veterinary and Zoonotic Interest. Frontiers in Veterinary Science, 2021, 8, 701848.	2.2	0
12	A Comparison of Peripheral Blood Smears, Autologous Cell Cultures, and Reverse Line Blot Hybridisation in Screening for Anaplasma/Ehrlichia in Roaming Dogs and Symptomatic Dogs in Trinidad. Pathogens, 2021, 10, 1431.	2.8	1
13	The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review. Microorganisms, 2021, 9, 2412.	3.6	15
14	Community Network Integration: An approach to alignment of One Health partners for solutions to â€Wicked' problems of antimicrobial resistance. Preventive Veterinary Medicine, 2020, 175, 104870.	1.9	3
15	Parasitic Mite Fauna in Asian Poultry Farming Systems. Frontiers in Veterinary Science, 2020, 7, 400.	2.2	13
16	Economic and Social Impacts of COVID-19 on Animal Welfare and Dairy Husbandry in Central Punjab, Pakistan. Frontiers in Veterinary Science, 2020, 7, 589971.	2.2	29
17	Dermanyssus gallinae and chickenÂegg production: impact, management, and a predicted compatibility matrix for integrated approaches. Experimental and Applied Acarology, 2020, 82, 441-453.	1.6	15
18	A nonexhaustive overview on potential impacts of the poultry red mite (Dermanyssus gallinae) on poultry production systems. Journal of Animal Science, 2020, 98, S58-S62.	0.5	6

#	Article	IF	CITATIONS
19	Circulation of Rickettsia species and rickettsial endosymbionts among small mammals and their ectoparasites in Eastern Slovakia. Parasitology Research, 2020, 119, 2047-2057.	1.6	9
20	Association of mechanical cleaning and a liquid preparation of diatomaceous earth in the management of poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Experimental and Applied Acarology, 2020, 81, 215-222.	1.6	12
21	In vitro acaricidal activity of essential oil and alcoholic extract of Trachyspermum ammi against Dermanyssus gallinae. Veterinary Parasitology, 2020, 278, 109030.	1.8	18
22	<i>Dermanysuss gallinae</i> attacks humans. Mind the gap!. Avian Pathology, 2019, 48, S22-S34.	2.0	40
23	Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite <i>Dermanyssus gallinae</i> (De Geer, 1778). Avian Pathology, 2019, 48, S52-S59.	2.0	8
24	The impact of the COREMI Cost Action Network on the progress towards the control of the poultry red mite, <i>Dermanyssus gallinae</i> . Avian Pathology, 2019, 48, S1-S1.	2.0	4
25	A Vaccinology Approach to the Identification and Characterization of Dermanyssus gallinae Candidate Protective Antigens for the Control of Poultry Red Mite Infestations. Vaccines, 2019, 7, 190.	4.4	17
26	Efficacy of a novel neem oil formulation (<scp>RP03</scp> â,,¢) to control the poultry red mite <scp><i>D</i></scp> <i>ermanyssus gallinae</i> . Medical and Veterinary Entomology, 2018, 32, 290-297.	1.5	20
27	Structural Insights from Molecular Dynamics Simulations of Tryptophan 7-Halogenase and Tryptophan 5-Halogenase. ACS Omega, 2018, 3, 4847-4859.	3.5	20
28	Spotlight on avian pathology: red mite, a serious emergent problem in layer hens. Avian Pathology, 2018, 47, 533-535.	2.0	32
29	Diversity of Coxiella-like and Francisella-like endosymbionts, and Rickettsia spp., Coxiella burnetii as pathogens in the tick populations of Slovakia, Central Europe. Ticks and Tick-borne Diseases, 2018, 9, 1207-1211.	2.7	44
30	Avian mite dermatitis: Diagnostic challenges and unmet needs. Parasite Immunology, 2018, 40, e12539.	1.5	13
31	2. Arthropod pests in the poultry industry. Ecology and Control of Vector-Borne Diseases, 2018, , 17-53.	0.7	4
32	The repellent efficacy of eleven essential oils against adult Dermacentor reticulatus ticks. Ticks and Tick-borne Diseases, 2017, 8, 780-786.	2.7	24
33	Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria. Microbial Ecology, 2017, 74, 947-960.	2.8	51
34	Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites and Vectors, 2017, 10, 357.	2.5	118
35	Transcription Factors as a Target for Vaccination Against Ticks and Mites. Advances in Protein Chemistry and Structural Biology, 2017, 107, 275-282.	2.3	2

The Future of Essential Oils as a Pest Biocontrol Method. , 2016, , 207-211.

2

#	Article	IF	CITATIONS
37	Conformational flexibility influences structure–function relationships in tyrosyl protein sulfotransferase-2. RSC Advances, 2016, 6, 11344-11352.	3.6	6
38	Associations Between the Level of Biosecurity and Occurrence of <i>Dermanyssus gallinae</i> and <i>Salmonella</i> spp. in Layer Farms. Avian Diseases, 2016, 60, 454-459.	1.0	21
39	Impeding movement of the poultry red mite, Dermanyssus gallinae. Veterinary Parasitology, 2016, 225, 104-107.	1.8	8
40	The effects of gender and muscle type on the mRNA levels of the calpain proteolytic system and beef tenderness during post-mortem aging. Livestock Science, 2016, 185, 123-130.	1.6	9
41	Isolation of the monooxygenase complex from Rhipicephalus (Boophilus) microplus – clues to understanding acaricide resistance. Ticks and Tick-borne Diseases, 2016, 7, 614-623.	2.7	9
42	Dimerization and ligand binding in tyrosylprotein sulfotransferase-2 are influenced by molecular motions. RSC Advances, 2016, 6, 18542-18548.	3.6	3
43	Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia. Experimental and Applied Acarology, 2016, 68, 127-137.	1.6	11
44	Understanding the biology and control of the poultry red mite <i>Dermanyssus gallinae</i> : a review. Avian Pathology, 2015, 44, 143-153.	2.0	57
45	Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?. Parasites and Vectors, 2015, 8, 178.	2.5	120
46	Rickettsia species in fleas collected from small mammals in Slovakia. Parasitology Research, 2015, 114, 4333-4339.	1.6	16
47	Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens. Veterinary Parasitology, 2015, 213, 61-66.	1.8	31
48	Molecular characterization and phylogenetic inferences of <i>Dermanyssus gallinae</i> isolates in <scp>I</scp> taly within an <scp>E</scp> uropean framework. Medical and Veterinary Entomology, 2014, 28, 447-452.	1.5	9
49	Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites and Vectors, 2014, 7, 28.	2.5	106
50	Significance and Control of the Poultry Red Mite, <i>Dermanyssus gallinae</i> . Annual Review of Entomology, 2014, 59, 447-466.	11.8	199
51	Sympatric occurrence of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks and Rickettsia and Babesia species in Slovakia. Ticks and Tick-borne Diseases, 2014, 5, 600-605.	2.7	46
52	An optimised protocol for molecular identification of Eimeria from chickens. Veterinary Parasitology, 2014, 199, 24-31.	1.8	56
53	Comparing Terpenes from Plant Essential Oils as Pesticides for the Poultry Red Mite (<i>Dermanyssus) Tj ETQq1</i>	1 0.78431 3.0	14 rgBT /Over 23
54	Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by reverse line blot hybridization. Aquaculture, 2012, 324-325, 33-38.	3.5	18

#	Article	IF	CITATIONS
55	A comparison of real-time PCR and reverse line blot hybridization in detecting feline haemoplasmas of domestic cats and an analysis of risk factors associated with haemoplasma infections. BMC Veterinary Research, 2012, 8, 103.	1.9	6
56	Review of external parasites of small ruminants. A practical guide to their prevention and control by Peter Bates. Parasites and Vectors, 2012, 5, .	2.5	0
57	Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions. Veterinary Parasitology, 2012, 187, 341-344.	1.8	18
58	Epidemiology and Antimicrobial Resistance of Salmonella sp. Isolated from Dogs and Cats in Northeastern Thailand. Journal of Animal and Veterinary Advances, 2012, 11, 618-621.	0.1	5
59	Chlamydia psittaci infection in canaries heavily infested by Dermanyssus gallinae. Experimental and Applied Acarology, 2011, 55, 329-338.	1.6	44
60	Dermanyssus gallinae in layer farms in Kosovo: a high risk for salmonella prevalence. Parasites and Vectors, 2011, 4, 136.	2.5	20
61	A case of transplacental transmission of Theileria equi in a foal in Trinidad. Veterinary Parasitology, 2011, 175, 363-366.	1.8	31
62	Parasitism in egg production systems: the role of the red mite (Dermanyssus gallinae). , 2011, , 394-414.		9
63	Opportunities for integrated pest management to control the poultry red mite, Dermanyssus gallinae. World's Poultry Science Journal, 2011, 67, 83-94.	3.0	27
64	Why dermanyssosis should be listed as an occupational hazard. Occupational and Environmental Medicine, 2011, 68, 628-628.	2.8	37
65	Immune responses of the domestic fowl to Dermanyssus gallinae under laboratory conditions. Parasitology Research, 2010, 106, 1425-1434.	1.6	15
66	Development and use of real-time PCR to detect and quantify Mycoplasma haemocanis and "Candidatus Mycoplasma haematoparvum―in dogs. Veterinary Microbiology, 2010, 140, 167-170.	1.9	71
67	Static and Dynamic Systems in Rickettsia slovaca Life Cycle Evaluated by Quantitative Real-Time Polymerase Chain Reaction. Transboundary and Emerging Diseases, 2010, 57, 70-71.	3.0	2
68	Characterization of the Immunological Response to Dermanyssus gallinae Infestation in Domestic Fowl. Transboundary and Emerging Diseases, 2010, 57, 107-110.	3.0	11
69	One health, one medicine: Tackling the challenge of emerging diseases. Transboundary and Emerging Diseases, 2010, 57, 1-2.	3.0	1
70	Effect of plant essential oils as acaricides against the poultry red mite, Dermanyssus gallinae, with special focus on exposure time. Veterinary Parasitology, 2010, 169, 222-225.	1.8	25
71	Environmental interactions with the toxicity of plant essential oils to the poultry red mite <i>Dermanyssus gallinae</i> . Medical and Veterinary Entomology, 2010, 24, 1-8.	1.5	53
72	Toxicity of plant essential oils to different life stages of the poultry red mite, <i>Dermanyssus gallinae</i> , and non-target invertebrates. Medical and Veterinary Entomology, 2010, 24, 9-15.	1.5	37

#	Article	IF	CITATIONS
73	Comparison of synthetic membranes in the development of an <i>in vitro</i> feeding system for <i>Dermanyssus gallinae</i> . Bulletin of Entomological Research, 2010, 100, 127-132.	1.0	12
74	Comparison of in vivo and in vitro survival and fecundity rates of the poultry red mite, Dermanyssus gallinae. Research in Veterinary Science, 2010, 88, 279-280.	1.9	8
75	Control methods for <i>Dermanyssus gallinae</i> in systems for laying hens: results of an international seminar. World's Poultry Science Journal, 2009, 65, 589-600.	3.0	71
76	Chapter 2 Diagnosis of Clinically Relevant Fungi in Medicine and Veterinary Sciences. Advances in Applied Microbiology, 2009, 66, 29-52.	2.4	3
77	Screening of essential oils from wild-growing plants in Tunisia for their yield and toxicity to the poultry red mite, Dermanyssus gallinae. Industrial Crops and Products, 2009, 30, 441-443.	5.2	12
78	Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Experimental and Applied Acarology, 2009, 48, 11-18.	1.6	95
79	Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. Experimental and Applied Acarology, 2009, 48, 43-50.	1.6	22
80	Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). Experimental and Applied Acarology, 2009, 48, 105-113.	1.6	42
81	Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Experimental and Applied Acarology, 2009, 48, 3-10.	1.6	133
82	Phylogenetic relationship between Dermanyssus gallinae populations in European countries based on mitochondrial COI gene sequences. Experimental and Applied Acarology, 2009, 48, 143-155.	1.6	17
83	The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Experimental and Applied Acarology, 2009, 48, 93-104.	1.6	112
84	Control of poultry mites: where do we stand?. Experimental and Applied Acarology, 2009, 48, 1-2.	1.6	9
85	A pilot study into the chemical and sensorial effect of thyme and pennyroyal essential oil on hens eggs. International Journal of Food Science and Technology, 2009, 44, 1836-1842.	2.7	4
86	Characterization of the immune response of domestic fowl following immunization with proteins extracted from Dermanyssus gallinae. Veterinary Parasitology, 2009, 160, 285-294.	1.8	24
87	Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Veterinary Parasitology, 2009, 161, 276-282.	1.8	57
88	Repellence of plant essential oils to Dermanyssus gallinae and toxicity to the non-target invertebrate Tenebrio molitor. Veterinary Parasitology, 2009, 162, 129-134.	1.8	49
89	Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry. Vaccine, 2009, 27, 4056-4063.	3.8	65
90	Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. , 2009, , 3-10.		17

#	Article	IF	CITATIONS
91	The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. , 2009, , 93-104.		17
92	Toxicity of geraniol solution <i>in vitro</i> to the poultry red mite, <i>Dermanyssus gallinae</i> . Parasite, 2009, 16, 319-321.	2.0	11
93	Control of poultry mites: where do we stand?. , 2009, , 1-2.		1
94	Endosymbiotic bacteria living inside the poultry red mite (Dermanyssus gallinae). , 2009, , 105-113.		3
95	Phylogenetic relationship between Dermanyssus gallinae populations in European countries based on mitochondrial COI gene sequences. , 2009, , 143-155.		Ο
96	From population structure to genetically-engineered vectors: New ways to control vector-borne diseases?. Infection, Genetics and Evolution, 2008, 8, 520-525.	2.3	8
97	The influence of â€~time since last blood meal' on the toxicity of essential oils to the poultry red mite (Dermanyssus gallinae). Veterinary Parasitology, 2008, 155, 333-335.	1.8	11
98	Introduction. Annals of the New York Academy of Sciences, 2008, 1149, xvii-xix.	3.8	3
99	Comparing Therapeutic Efficacy between Ivermectin, Selamectin, and Moxidectin in Canaries during Natural Infection withDermanyssus gallinae. Annals of the New York Academy of Sciences, 2008, 1149, 365-367.	3.8	7
100	Epidemiological Scenario of Giardiosis in Dogs from Central Italy. Annals of the New York Academy of Sciences, 2008, 1149, 371-374.	3.8	24
101	Toward a PCR-Independent Molecular Diagnosis of Veterinary and Medically Relevant Pathogenic Organisms. Annals of the New York Academy of Sciences, 2008, 1149, 391-393.	3.8	Ο
102	Study on <i>Theileria lestoquardi</i> Antigens as Potential Vaccine Candidates. Annals of the New York Academy of Sciences, 2008, 1149, 205-207.	3.8	1
103	Use of Plantâ€derived Products to Control Arthropods of Veterinary Importance: A Review. Annals of the New York Academy of Sciences, 2008, 1149, 23-26.	3.8	34
104	Development of Specific Oligonucleotide Probes to Detect <i>Vibrio</i> Species. Annals of the New York Academy of Sciences, 2008, 1149, 312-314.	3.8	4
105	Immunological Control of the Poultry Red Mite. Annals of the New York Academy of Sciences, 2008, 1149, 36-40.	3.8	15
106	The Application of PCR and Reverse Line Blot Hybridization to Detect Arthropodâ€borne Hemopathogens of Dogs and Cats in Trinidad. Annals of the New York Academy of Sciences, 2008, 1149, 196-199.	3.8	37
107	The Poultry Red Mite <i>Dermanyssus gallinae</i> as a Potential Carrier of Vectorâ€borne Diseases. Annals of the New York Academy of Sciences, 2008, 1149, 255-258.	3.8	35
108	Rickettsial Agents in Slovakian Ticks (Acarina, Ixodidae) and Their Ability to Grow in Vero and L929 Cell Lines. Annals of the New York Academy of Sciences, 2008, 1149, 281-285.	3.8	18

#	Article	IF	CITATIONS
109	Lack of prolonged activity of lavender essential oils as acaricides against the poultry red mite (Dermanyssus gallinae) under laboratory conditions. Research in Veterinary Science, 2008, 85, 540-542.	1.9	33
110	Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. , 2008, , 11-18.		9
111	Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four eucalyptus essential oils. , 2008, , 43-50.		Ο
112	New Method for Simultaneous Species-Specific Identification of Equine Strongyles (Nematoda,) Tj ETQq0 0 0 rg	gBT ¦Overlo 3.9	ock $\begin{array}{c} 10\\ 63 \end{array}$ Tf 50 6
113	Occurrence of anthelmintic resistant equine cyathostome populations in central and southern Italy. Preventive Veterinary Medicine, 2007, 82, 314-320.	1.9	46
114	Integrated Molecular Diagnosis of Theileria and Babesia Species of Cattle in Italy. Annals of the New York Academy of Sciences, 2006, 916, 533-539.	3.8	19
115	Characterization of Lactic Acid Bacteria and Other Gut Bacteria in Pigs by a Macroarraying Method. Annals of the New York Academy of Sciences, 2006, 1081, 276-279.	3.8	8
116	Molecular Diagnosis of Granulocytic Anaplasmosis and Infectious Cyclic Thrombocytopenia by PCR-RFLP. Annals of the New York Academy of Sciences, 2006, 1081, 371-378.	3.8	18
117	Phylogenetics ofTheileriaSpecies in Small Ruminants. Annals of the New York Academy of Sciences, 2006, 1081, 505-508.	3.8	12
118	Ticks (Ixodidae) from passerine birds in the Carpathian region. Wiener Klinische Wochenschrift, 2006, 118, 759-764.	1.9	43
119	Immunological effects and productivity variation of red mite (Dermanyssus gallinae) on laying hens- implications for egg production and quality. World's Poultry Science Journal, 2006, 62, 249-257.	3.0	24
120	Impact of ticks and tick-borne diseases on agriculture and human populations in Europe. Journal of Agricultural Science, 2005, 143, 463-468.	1.3	1
121	Molecular surveillance of tick-borne diseases in Iranian small ruminants. Small Ruminant Research, 2005, 57, 245-248.	1.2	27
122	Prevalence of Theileriosis in Red Hartebeest (Alcelaphus buselaphus caama) in Namibia. Parasitology Research, 2005, 97, 77-79.	1.6	9
123	Immunoglobulin-Y (IgY) levels in domestic fowl exposed to red mite (Dermanyssus gallinae). Proceedings of the British Society of Animal Science, 2005, 2005, 172-172.	0.0	Ο
124	Anaplasma phagocytophilum, Sardinia, Italy. Emerging Infectious Diseases, 2005, 11, 1322-1324.	4.3	44
125	Dermatophilosis in goats in Sicily. Veterinary Record, 2005, 156, 120-121.	0.3	10
126	Equine and Canine Anaplasma phagocytophilum Strains Isolated on the Island of Sardinia (Italy) Are Phylogenetically Related to Pathogenic Strains from the United States. Applied and Environmental Microbiology, 2005, 71, 6418-6422.	3.1	117

#	Article	IF	CITATIONS
127	Molecular identification of gut lactic acid bacteria in pigs by macro-arraying techniques. Proceedings of the British Society of Animal Science, 2005, 2005, 94-94.	0.0	0
128	2004 SPRING MEETING OF THE WPSA UK BRANCH POSTERS. British Poultry Science, 2004, 45, S45-S46.	1.7	9
129	Study of Gastrointestinal Nematodes in Sicilian Sheep and Goats. Annals of the New York Academy of Sciences, 2004, 1026, 187-194.	3.8	23
130	Climatic Conditions and Gastrointestinal Nematode Egg Production: Observations in Breeding Sheep and Goats. Annals of the New York Academy of Sciences, 2004, 1026, 203-209.	3.8	4
131	Discrimination between Theileria lestoquardi and Theileria annulata in their vectors and hosts by RFLP based on the 18S rRNA gene. Parasitology Research, 2004, 94, 318-320.	1.6	8
132	2004 SPRING MEETING OF THE WPSA UK BRANCH PAPERS. British Poultry Science, 2004, 45, S15-S16.	1.7	34
133	Vibrio vulnificus. , 2004, , 1312-1315.		1
134	Molecular Detection of <i>Anaplasma Platys</i> in Dogs Using Polymerase Chain Reaction and Reverse Line Blot Hybridization. Journal of Veterinary Diagnostic Investigation, 2003, 15, 527-534.	1.1	45
135	Molecular characterization of the bivalves Mya arenaria, Mya truncata and Hiatella arctica. Journal of Molluscan Studies, 2002, 68, 190-191.	1.2	3
136	Simultaneous detection of Anaplasma and Ehrlichia species in ruminants and detection of Ehrlichia ruminantium in Amblyomma variegatum ticks by reverse line blot hybridization. Veterinary Microbiology, 2002, 89, 223-238.	1.9	183
137	Methods used to study bacterial diversity in the marine environment around Qingdao. Journal of the Ocean University of Qingdao, 2002, 1, 153-156.	0.1	4
138	PCR and Molecular Detection for Differentiating <i>Vibrio</i> Species. Annals of the New York Academy of Sciences, 2002, 969, 60-65.	3.8	14
139	Panâ€Mediterranean Comparison for the Molecular Detection of <i>Theileria annulata</i> . Annals of the New York Academy of Sciences, 2002, 969, 73-77.	3.8	4
140	Reverse Line Blot Hybridization Used to Identify Hemoprotozoa in Minorcan Cattle. Annals of the New York Academy of Sciences, 2002, 969, 78-82.	3.8	19
141	First report of <i>Babesia bovis</i> in Spain. Veterinary Record, 2001, 149, 716-717.	0.3	6
142	Detection of haemoparasites in cattle by reverse line blot hybridisation with a note on the distribution of ticks in Sicily. Veterinary Parasitology, 2001, 99, 273-286.	1.8	198
143	First isolation of Trypanosoma theileri in Sicilian cattle. Veterinary Research Communications, 2000, 24, 471-475.	1.6	16
144	Induction of a putative monooxygenase of crabs (Carcinusspp.) by polycyclic aromatic hydrocarbons. Biomarkers, 1999, 4, 203-213.	1.9	7

#	Article	IF	CITATIONS
145	Privatization of animal health services in the tropics. , 1999, 31, 191-192.		2
146	Molecular detection of pathogen DNA in ticks (Acari: Ixodidae): a review. Experimental and Applied Acarology, 1999, 23, 929-960.	1.6	93
147	Effects of tetramethylthiuram disulphide (thiram) on adenine nucleotide (ATP, ADP, AMP) levels in the ciliateTetrahymena pyriformis. Environmental Toxicology, 1999, 14, 409-413.	4.0	0
148	Molecular characterization of ticks and tick-borne pathogens. Parassitologia, 1999, 41 Suppl 1, 101-5.	0.5	0
149	Characterization and Discrimination of Three Theileria parva Stabilates Involved in East Coast Fever Vaccinationa a. Annals of the New York Academy of Sciences, 1998, 849, 63-68.	3.8	1
150	A PCR-based Field Evaluation of Theileria Infections in Cattle and Ticks in Kenya a. Annals of the New York Academy of Sciences, 1998, 849, 69-77.	3.8	7
151	Chemoprophylaxis of Theileria annulata and Theileria parva infections of calves with buparvaquone. Veterinary Parasitology, 1998, 78, 1-12.	1.8	15
152	Stage-specific activity in vitro on the Theileria infection process of serum from calves treated prophylactically with buparvaquone. Veterinary Parasitology, 1998, 80, 127-136.	1.8	2
153	Evidence of <i>Theileria buffeli</i> infection in cattle in southern Italy. Veterinary Record, 1997, 140, 581-583.	0.3	14
154	Non-systemic infection in Rhipicephalus appendiculatus ticks. Parasitology Today, 1997, 13, 201.	3.0	2
155	Naegleria fowleri:Location of a Specific Antigen Using an Immunogold Labeling Method. Experimental Parasitology, 1997, 85, 299-302.	1.2	0
156	Use of the polymerase chain reaction for identification and quantification of Theileria parva protozoa in Rhipicephalus appendiculatus ticks. Parasitology Research, 1997, 83, 359-363.	1.6	16
157	Biochemical and genotoxic biomarkers in the Mediterranean crab Carcinus aestuarii experimentally exposed to polychlorobiphenyls, benzopyrene and methyl-mercury. Marine Environmental Research, 1996, 42, 29-32.	2.5	13
158	Griseofulvin: Generation time and atp changes in the ciliate tetrahymena pyriformis. Life Sciences, 1995, 57, 897-901.	4.3	3
159	Differentiation of Naegleria fowleri from other species of Naegleria using monoclonal antibodies and the polymerase chain reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1994, 88, 119-120.	1.8	8
160	Polymerase chain reaction to detect the pathogenic Naegleria fowleri: application to water samples. Journal of Microbiological Methods, 1994, 19, 81-88.	1.6	0
161	Differentiation ofNaegleria fowleriand other naegleriae by polymerase chain reaction and hybridization methods. FEMS Microbiology Letters, 1993, 110, 325-330.	1.8	23
162	Detection ofNaegleria fowlericysts in environmental samples by using a DNA probe. FEMS Microbiology Letters, 1993, 112, 349-352.	1.8	12

5

#	Article	IF	CITATIONS
163	Use of monoclonal antibodies to distinguish pathogenic Naegleria fowleri (cysts, trophozoites, or) Tj ETQq1 1	0.78 <u>43</u> 14 ı 3.9	rgBT_/Overloc

New challenges posed by ticks and tick-borne diseases. , 0, , 1.