
Badreddine Douzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8684435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Architecture and assembly of the Type VI secretion system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1664-1673.	1.9	246
2	The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. PLoS Genetics, 2015, 11, e1005545.	1.5	148
3	Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar. PLoS Pathogens, 2011, 7, e1002386.	2.1	132
4	Priming and polymerization of a bacterial contractile tail structure. Nature, 2016, 531, 59-63.	13.7	127
5	TssK Is a Trimeric Cytoplasmic Protein Interacting with Components of Both Phage-like and Membrane Anchoring Complexes of the Type VI Secretion System. Journal of Biological Chemistry, 2013, 288, 27031-27041.	1.6	100
6	On the path to uncover the bacterial type II secretion system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1059-1072.	1.8	95
7	Protein–Protein Interactions: Surface Plasmon Resonance. Methods in Molecular Biology, 2017, 1615, 257-275.	0.4	93
8	Deciphering the Xcp Pseudomonas aeruginosa Type II Secretion Machinery through Multiple Interactions with Substrates. Journal of Biological Chemistry, 2011, 286, 40792-40801.	1.6	91
9	Towards a complete structural deciphering of Type VI secretion system. Current Opinion in Structural Biology, 2018, 49, 77-84.	2.6	78
10	The XcpV/GspI Pseudopilin Has a Central Role in the Assembly of a Quaternary Complex within the T2SS Pseudopilus. Journal of Biological Chemistry, 2009, 284, 34580-34589.	1.6	58
11	High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microbial Cell Factories, 2013, 12, 37.	1.9	51
12	The gp27-like Hub of VgrG Serves as Adaptor to Promote Hcp Tube Assembly. Journal of Molecular Biology, 2018, 430, 3143-3156.	2.0	47
13	YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli. Nature Communications, 2019, 10, 5763.	5.8	44
14	Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS ONE, 2014, 9, e86918.	1.1	44
15	Structure–Function Analysis of the TssL Cytoplasmic Domain Reveals a New Interaction between the Type VI Secretion Baseplate and Membrane Complexes. Journal of Molecular Biology, 2016, 428, 4413-4423.	2.0	33
16	Structure and specificity of the Type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Scientific Reports, 2016, 6, 34405.	1.6	31
17	Structure of thePseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. Journal of Structural Biology, 2010, 169, 75-80.	1.3	29
18	Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. Journal of Biological Chemistry, 2018, 293, 19441-19450.	1.6	28

BADREDDINE DOUZI

#	Article	IF	CITATIONS
19	d-Maurocalcine, a Pharmacologically Inert Efficient Cell-penetrating Peptide Analogue. Journal of Biological Chemistry, 2010, 285, 34168-34180.	1.6	27
20	Txc, a New Type II Secretion System of Pseudomonas aeruginosa Strain PA7, Is Regulated by the TtsS/TtsR Two-Component System and Directs Specific Secretion of the CbpE Chitin-Binding Protein. Journal of Bacteriology, 2014, 196, 2376-2386.	1.0	27
21	Structural interactions define assembly adapter function of a type II secretion system pseudopilin. Structure, 2021, 29, 1116-1127.e8.	1.6	20
22	The Assembly Mode of the Pseudopilus. Journal of Biological Chemistry, 2011, 286, 24407-24416.	1.6	19
23	Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS ONE, 2013, 8, e81074.	1.1	19
24	Unraveling the Self-Assembly of the <i>Pseudomonas aeruginosa</i> XcpQ Secretin Periplasmic Domain Provides New Molecular Insights into Type II Secretion System Secreton Architecture and Dynamics. MBio, 2017, 8, .	1.8	19
25	Structure of the minor pseudopilin XcpW from thePseudomonas aeruginosatype II secretion system. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 124-130.	2.5	18
26	Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS ONE, 2015, 10, e0122187.	1.1	16
27	HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium nostoc PCC 7120. ELife, 2020, 9, .	2.8	8
28	Structure–Function Analysis of the C-Terminal Domain of the Type VI Secretion TssB Tail Sheath Subunit. Journal of Molecular Biology, 2018, 430, 297-309.	2.0	6
29	Structural and Biochemical Analysis of OrfG: The VirB8-like Component of the Conjugative Type IV Secretion System of ICESt3 From Streptococcus thermophilus. Frontiers in Molecular Biosciences, 2021, 8, 642606.	1.6	3
30	Structural Interactions Define Assembly Adapter Function of Type II Secretion System Protein. SSRN Electronic Journal, 0, , .	0.4	0
31	A new twin expands the VirB8-like protein family. Structure, 2022, 30, 790-792.	1.6	Ο