Daniel Matatagui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683912/publications.pdf Version: 2024-02-01

ΝΑΝΙΕΙ ΜΑΤΑΤΑCIU

#	Article	IF	CITATIONS
1	Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta, 2016, 148, 393-400.	2.9	95
2	Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensors and Actuators B: Chemical, 2018, 274, 601-608.	4.0	86
3	Chemical warfare agents simulants detection with an optimized SAW sensor array. Sensors and Actuators B: Chemical, 2011, 154, 199-205.	4.0	78
4	A magnonic gas sensor based on magnetic nanoparticles. Nanoscale, 2015, 7, 9607-9613.	2.8	50
5	Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sensors and Actuators B: Chemical, 2012, 175, 173-178.	4.0	49
6	Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases. Sensors and Actuators B: Chemical, 2017, 240, 497-502.	4.0	37
7	ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors, 2019, 9, 4.	2.3	33
8	Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sensors and Actuators B: Chemical, 2020, 304, 127337.	4.0	33
9	Detection of bacteriophages in dynamic mode using a Love-wave immunosensor with microfluidics technology. Sensors and Actuators B: Chemical, 2013, 185, 218-224.	4.0	28
10	Single-walled carbon nanotube microsensors for nerve agent simulant detection. Sensors and Actuators B: Chemical, 2011, 157, 253-259.	4.0	27
11	Ultrasensitive NO2 gas sensor with insignificant NH3-interference based on a few-layered mesoporous graphene. Sensors and Actuators B: Chemical, 2021, 335, 129657.	4.0	27
12	Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents. Sensors, 2014, 14, 12658-12669.	2.1	25
13	Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Talanta, 2011, 85, 1442-1447.	2.9	24
14	Nanocrystalline Tin Oxide Nanofibers Deposited by a Novel Focused Electrospinning Method. Application to the Detection of TATP Precursors. Sensors, 2014, 14, 24231-24243.	2.1	23
15	Portable Low-Cost Electronic Nose Based on Surface Acoustic Wave Sensors for the Detection of BTX Vapors in Air. Sensors, 2019, 19, 5406.	2.1	23
16	Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. Talanta, 2014, 120, 408-412.	2.9	22
17	Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature. Sensors and Actuators B: Chemical, 2020, 321, 128573.	4.0	21
18	Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring. Sensors, 2020, 20, 1432.	2.1	20

Daniel Matatagui

#	Article	IF	CITATIONS
19	Cas sensors based on elasticity changes of nanoparticle layers. Sensors and Actuators B: Chemical, 2018, 268, 93-99.	4.0	19
20	Ex-vivo biological tissue differentiation by the Distribution of Relaxation Times method applied to Electrical Impedance Spectroscopy. Electrochimica Acta, 2018, 276, 214-222.	2.6	19
21	Comparison of two types of acoustic biosensors to detect immunoreactions: Love-wave sensor working in dynamic mode and QCM working in static mode. Sensors and Actuators B: Chemical, 2013, 189, 123-129.	4.0	18
22	Eco-Friendly Disposable WS2 Paper Sensor for Sub-ppm NO2 Detection at Room Temperature. Nanomaterials, 2022, 12, 1213.	1.9	13
23	A novel ultra-high frequency humidity sensor based on a magnetostatic spin wave oscillator. Sensors and Actuators B: Chemical, 2015, 210, 297-301.	4.0	12
24	Propagation of acoustic waves in metal oxide nanoparticle layers with catalytic metals for selective gas detection. Sensors and Actuators B: Chemical, 2015, 217, 65-71.	4.0	12
25	Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	8
26	Acoustic Sensors Based on Amino-Functionalized Nanoparticles to Detect Volatile Organic Solvents. Sensors, 2017, 17, 2624.	2.1	8
27	Carbon SH-SAW-Based Electronic Nose to Discriminate and Classify Sub-ppm NO2. Sensors, 2022, 22, 1261.	2.1	8
28	Bioimpedance Parameter Estimation using Fast Spectral Measurements and Regularization. IFAC-PapersOnLine, 2018, 51, 521-526.	0.5	6
29	Novel SH-SAW Biosensors for Ultra-Fast Recognition of Growth Factors. Biosensors, 2022, 12, 17.	2.3	6
30	Optimized design of a SAW sensor array for chemical warfare agents simulants detection. Procedia Chemistry, 2009, 1, 232-235.	0.7	5
31	Sensors and Systems for Environmental Monitoring and Control. Journal of Sensors, 2017, 2017, 1-2.	0.6	5
32	Polypyrrole Based Love-Wave Gas Sensor Devices with Enhanced Properties to Ammonia. Proceedings (mdpi), 2018, 2, .	0.2	4
33	Magnonic Crystal with Strips of Magnetic Nanoparticles: Modeling and Experimental Realization via a Dip-Coating Technique. Magnetochemistry, 2021, 7, 155.	1.0	4
34	High-Performance Ammonia Sensor at Room Temperature Based on a Love-Wave Device with Fe2O3@WO3â^'x Nanoneedles. Proceedings (mdpi), 2017, 1, .	0.2	3
35	Discrimination and classification of chemical warfare agent simulants using a Love-wave sensor array. Procedia Engineering, 2011, 25, 23-26.	1.2	2

36 Saw Sensor Array for Chemical Warfare Agent Simulants. , 2009, , .

1

DANIEL MATATAGUI

#	Article	IF	CITATIONS
37	Love Wave Gas Sensor based on Surface-functionalized Nanoparticles. Procedia Engineering, 2015, 120, 606-609.	1.2	1
38	Love wave toluene sensor based on multi-guiding layers. , 2017, , .		1
39	Study of magnetoelastic resonance for chemical sensors: Ribbons vs microwires. , 2021, , .		1
40	Electronic Sensory Systems for Characterization of Bioactive Compounds. , 2016, , 190-217.		1
41	Analysis of Impedance Spectroscopy Measurements of Biological Tissue using the Distribution of Relaxation Times Method. , 2017, , .		1
42	Design and fabrication of Love-wave sensors: An experimental study. , 2011, , .		0
43	Array of Love-wave sensors to detect CWA low-levels. , 2011, , .		Ο
44	Comparative Evaluation between Two Acoustic Immunosensors: Love-wave and QCM, and Systems of Measurement: Dynamic and Static. Procedia Engineering, 2012, 47, 174-177.	1.2	0
45	Microfluidics applied to Love-wave devices to detect biological warfare agents in dynamic mode. , 2013, , .		0
46	Cascade of Artificial Neural Network committees for the calibration of small gas commercial sensors for NO <inf>2</inf> , NH <inf>3</inf> and CO. , 2014, , .		0
47	Liquid characterization by means of Love-wave device combined with microfluidic platform. , 2015, , .		Ο
48	Modeling and simulation of a magnonic gas sensor to detected diseases in human breath. , 2021, , .		0
49	Spin waves and magnetic nanoparticles for gas sensing applications. SPIE Newsroom, 0, , .	0.1	0