Weilu Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683749/publications.pdf

Version: 2024-02-01

236925 197818 3,962 52 25 49 citations h-index g-index papers 53 53 53 6714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hall effect in gated single-wall carbon nanotube films. Scientific Reports, 2022, 12, 101.	3.3	1
2	Carbon Nanotube Devices for Quantum Technology. Materials, 2022, 15, 1535.	2.9	22
3	Physics-informed recurrent neural network for time dynamics in optical resonances. Nature Computational Science, 2022, 2, 169-178.	8.0	7
4	Graphene plasmonic spatial light modulator for reconfigurable diffractive optical neural networks. Optics Express, 2022, 30, 12712.	3.4	6
5	Colors of Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2021, 33, e2006395.	21.0	18
6	Carbon Nanotubes: Colors of Singleâ€Wall Carbon Nanotubes (Adv. Mater. 8/2021). Advanced Materials, 2021, 33, 2170060.	21.0	1
7	Artificial Intelligence Accelerators Based on Graphene Optoelectronic Devices. Advanced Photonics Research, 2021, 2, 2100048.	3.6	11
8	Real-time multi-task diffractive deep neural networks via hardware-software co-design. Scientific Reports, 2021, 11, 11013.	3.3	24
9	Band structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubes. Carbon, 2021, 183, 774-779.	10.3	5
10	Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001.	2.8	19
11	Observation of Photoinduced Terahertz Gain in GaAs Quantum Wells: Evidence for Radiative Two-Exciton-to-Biexciton Scattering. Physical Review Letters, 2020, 125, 167401.	7.8	3
12	Ultrastrong light–matter coupling in semiconductors. Semiconductors and Semimetals, 2020, 105, 89-151.	0.7	7
13	Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40629-40634.	8.0	55
14	Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication. Nano Letters, 2020, 20, 3098-3105.	9.1	21
15	Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. Nanomaterials, 2020, 10, 1203.	4.1	44
16	Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration. Nano Letters, 2020, 20, 2332-2338.	9.1	38
17	Macroscopically Aligned Carbon Nanotubes as a Refractory Platform for Hyperbolic Thermal Emitters. ACS Photonics, 2019, 6, 1602-1609.	6.6	35
18	Solving the Thermoelectric Trade-Off Problem with Metallic Carbon Nanotubes. Nano Letters, 2019, 19, 7370-7376.	9.1	50

#	Article	IF	Citations
19	Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. Royal Society Open Science, 2019, 6, 181605.	2.4	37
20	Silicon Reconfigurable Electro-Optical Logic Circuit Enabled by a Single-Wavelength Light Input. IEEE Photonics Technology Letters, 2019, 31, 435-438.	2.5	4
21	Terahertz Faraday and Kerr rotation spectroscopy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m .<="" 100,="" 2019,="" 30="" b,="" fields="" films="" high="" in="" magnetic="" physical="" review="" td="" tesla.="" to="" up=""><td>ro%.2<mm< td=""><td>ป:กบร>1</td></mm<></td></mml:m></mml:msub></mml:mrow></mml:math>	ro %.2 <mm< td=""><td>ป:กบร>1</td></mm<>	ป:ก บร >1
22	One-directional thermal transport in densely aligned single-wall carbon nanotube films. Applied Physics Letters, 2019, 115, .	3.3	23
23	Direct observation of cross-polarized excitons in aligned single-chirality single-wall carbon nanotubes. Physical Review B, 2019, 99, .	3.2	15
24	Observation of Narrow-Band Terahertz Gain in Two-Dimensional Magnetoexcitons. , 2019, , .		1
25	Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nature Photonics, 2018, 12, 324-329.	31.4	98
26	Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nature Photonics, 2018, 12, 362-367.	31.4	99
27	Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes. Nature Communications, 2018, 9, 1121.	12.8	52
28	Isotropic Seebeck coefficient of aligned single-wall carbon nanotube films. Applied Physics Letters, 2018, 113, .	3.3	26
29	Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale, 2018, 10, 14938-14946.	5.6	37
30	Modulationâ€Doped Multiple Quantum Wells of Aligned Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2017, 27, 1606022.	14.9	17
31	Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions. Nanoscale Research Letters, 2017, 12, 81.	5.7	6
32	Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017 , 11 , 577 - 582 .	31.4	235
33	Low-Dimensional Nanomaterials and Their Functional Architectures: Synthesis, Properties, and Applications. Journal of Nanomaterials, 2017, 2017, 1-2.	2.7	4
34	Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nature Nanotechnology, 2016, 11, 633-638.	31.5	292
35	Stability of High-Density Two-Dimensional Excitons against a Mott Transition in High Magnetic Fields Probed by Coherent Terahertz Spectroscopy. Physical Review Letters, 2016, 117, 207402.	7.8	12
36	Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics. Scientific Reports, 2015, 5, 11115.	3.3	35

#	Article	IF	Citations
37	Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 5605-5609.	21.0	241
38	Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Scientific Reports, 2015, 5, 8671.	3.3	135
39	Proposed high-speed micron-scale spatial light valve based on a silicon-graphene hybrid structure. Optics Letters, 2015, 40, 4480.	3.3	9
40	High-Voltage Breakdown and the Gunn Effect in GaAs/AlGaAs Nanoconstrictions. IEEE Nanotechnology Magazine, 2015, 14, 524-530.	2.0	2
41	An Atomically Layered InSe Avalanche Photodetector. Nano Letters, 2015, 15, 3048-3055.	9.1	253
42	High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures. Optics Express, 2014, 22, 3747.	3.4	17
43	Efficient Modulation of 1.55 \hat{l} Am Radiation with Gated Graphene on a Silicon Microring Resonator. Nano Letters, 2014, 14, 6811-6815.	9.1	137
44	Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Letters, 2014, 14, 1354-1361.	9.1	129
45	Boron Nitride–Graphene Nanocapacitor and the Origins of Anomalous Size-Dependent Increase of Capacitance. Nano Letters, 2014, 14, 1739-1744.	9.1	120
46	Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nature Communications, 2014, 5, 3193.	12.8	198
47	Carbon Nanotube Terahertz Detector. Nano Letters, 2014, 14, 3953-3958.	9.1	223
48	High-Contrast Terahertz Wave Modulation by Gated Graphene Enhanced by Extraordinary Transmission through Ring Apertures. Nano Letters, 2014, 14, 1242-1248.	9.1	214
49	Excitation and Active Control of Propagating Surface Plasmon Polaritons in Graphene. Nano Letters, 2013, 13, 3698-3702.	9.1	238
50	Suspended Si ring resonator for mid-IR application. Optics Letters, 2013, 38, 1122.	3.3	60
51	Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances. ACS Nano, 2012, 6, 7806-7813.	14.6	610
52	High-sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi-frequency resonance metamaterials. Journal of Food Measurement and Characterization, 0, , 1.	3.2	1