Mu-Qing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683408/publications.pdf

Version: 2024-02-01

304743 345221 1,771 88 22 36 citations h-index g-index papers 94 94 94 1267 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heat Treatment Eliminates <i>Candidatus</i> Liberibacter asiaticus' from Infected Citrus Trees Under Controlled Conditions. Phytopathology, 2013, 103, 15-22.	2.2	119
2	Effective Antibiotics against â€~Candidatus Liberibacter asiaticus' in HLB-Affected Citrus Plants Identified via the Graft-Based Evaluation. PLoS ONE, 2014, 9, e111032.	2.5	95
3	Chemical Compounds Effective Against the Citrus Huanglongbing Bacterium â€~ <i>Candidatus</i> Liberibacter asiaticus' In Planta. Phytopathology, 2011, 101, 1097-1103.	2.2	89
4	Species-Specific Detection and Identification of Fusarium Species Complex, the Causal Agent of Sugarcane Pokkah Boeng in China. PLoS ONE, 2014, 9, e104195.	2.5	70
5	Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective. Renewable and Sustainable Energy Reviews, 2020, 133, 110296.	16.4	54
6	Screening Molecules for Control of Citrus Huanglongbing Using an Optimized Regeneration System for â€~ <i>Candidatus</i> Liberibacter asiaticus'-Infected Periwinkle (<i>Catharanthus roseus</i> Cuttings. Phytopathology, 2010, 100, 239-245.	2.2	53
7	A Graft-Based Chemotherapy Method for Screening Effective Molecules and Rescuing Huanglongbing-Affected Citrus Plants. Phytopathology, 2012, 102, 567-574.	2.2	53
8	Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Scientific Reports, 2018, 8, 1683.	3.3	46
9	Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing. PLoS ONE, 2015, 10, e0133826.	2.5	45
10	Genome-wide identification and expression analysis of AP2/ERF transcription factors in sugarcane (Saccharum spontaneum L.). BMC Genomics, 2020, 21, 685.	2.8	44
11	Characterization of the microbial community structure in Candidatus Liberibacter asiaticus-infected citrus plants treated with antibiotics in the field. BMC Microbiology, 2013, 13, 112.	3.3	42
12	Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Theoretical and Applied Genetics, 2020, 133, 187-199.	3.6	42
13	Differential Protein Expression in Sugarcane during Sugarcane-Sporisorium scitamineumInteraction Revealed by 2-DE and MALDI-TOF-TOF/MS. Comparative and Functional Genomics, 2011, 2011, 1-10.	2.0	39
14	Field Evaluation of Integrated Management for Mitigating Citrus Huanglongbing in Florida. Frontiers in Plant Science, 2018, 9, 1890.	3.6	34
15	Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus. Frontiers in Plant Science, 2017, 8, 104.	3.6	33
16	Deciphering the Bacterial Microbiome in Huanglongbing-Affected Citrus Treated with Thermotherapy and Sulfonamide Antibiotics. PLoS ONE, 2016, 11, e0155472.	2.5	33
17	Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 2022, 54, 885-896.	21.4	33
18	Unexpected Inheritance Pattern of Erianthus arundinaceus Chromosomes in the Intergeneric Progeny between Saccharum spp. and Erianthus arundinaceus. PLoS ONE, 2014, 9, e110390.	2.5	31

#	Article	IF	CITATIONS
19	Deciphering the Bacterial Microbiome of Citrus Plants in Response to â€ [*] Candidatus Liberibacter asiaticusâ€ [™] -Infection and Antibiotic Treatments. PLoS ONE, 2013, 8, e76331.	2.5	31
20	Mitigating citrus huanglongbing via effective application of antimicrobial compounds and thermotherapy. Crop Protection, 2016, 84, 150-158.	2.1	29
21	Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Frontiers in Microbiology, 2020, 11, 704.	3.5	29
22	Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology, 2020, 20, 422.	3.6	27
23	Molecular characterization of carbendazim resistance of Fusarium species complex that causes sugarcane pokkah boeng disease. BMC Genomics, 2019, 20, 115.	2.8	26
24	Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp. and Erianthus arundinaceus. PLoS ONE, 2015, 10, e0133722.	2.5	25
25	Comparison and analysis of tomato flavor compounds using different extraction methods. Journal of Food Measurement and Characterization, 2020, 14, 465-475.	3.2	25
26	The formation and evolution of centromeric satellite repeats in <i>Saccharum</i> species. Plant Journal, 2021, 106, 616-629.	5.7	24
27	Deciphering the transcriptomic response of Fusarium verticillioides in relation to nitrogen availability and the development of sugarcane pokkah boeng disease. Scientific Reports, 2016, 6, 29692.	3.3	23
28	Banana Fusarium Wilt Disease Detection by Supervised and Unsupervised Methods from UAV-Based Multispectral Imagery. Remote Sensing, 2022, 14, 1231.	4.0	23
29	RNA Interference: Promising Approach to Combat Plant Viruses. International Journal of Molecular Sciences, 2022, 23, 5312.	4.1	22
30	Evolutionary expansion and functional divergence of sugar transporters in <i>Saccharum</i> (<i>S.) Tj ETQq0 0 (</i>	0 rgBT /Ov	verlock 10 Tf 5
31	Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics, 2021, 22, 456.	2.8	20
32	Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response. BMC Genomics, 2021, 22, 622.	2.8	20
33	Identification and Characterization of a New Fungal Pathogen Causing Twisted Leaf Disease of Sugarcane in China. Plant Disease, 2015, 99, 325-332.	1.4	19
34	Sugarcane Production in China. , 2018, , .		19
35	Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biology, 2020, 20, 532.	3.6	19
36	Chromosomeâ€specific painting unveils chromosomal fusions and distinct allopolyploid species in the ⟨i⟩Saccharum⟨/i⟩ complex. New Phytologist, 2022, 233, 1953-1965.	7.3	19

#	Article	IF	CITATIONS
37	Virome Identification and Characterization of Fusarium sacchari and F. andiyazi: Causative Agents of Pokkah Boeng Disease in Sugarcane. Frontiers in Microbiology, 2020, 11, 240.	3.5	18
38	Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. Journal of Fungi (Basel, Switzerland), 2022, 8, 59.	3.5	18
39	A high-quality genome assembly of <i>Morinda officinalis</i> , a famous native southern herb in the Lingnan region of southern China. Horticulture Research, 2021, 8, 135.	6.3	17
40	First Report of <i>Fusarium commune</i> Causing Root Rot Disease of Sugarcane (var. Badila) in China. Plant Disease, 2018, 102, 1660.	1.4	15
41	Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization. Molecular Cytogenetics, 2018, 11, 35.	0.9	15
42	Interactions between ScNAC23 and ScGAI regulate GA-mediated flowering and senescence in sugarcane. Plant Science, 2021, 304, 110806.	3.6	15
43	Antimicrobial Compounds Effective against Candidatus Liberibacter asiaticus Discovered via Graft-based Assay in Citrus. Scientific Reports, 2018, 8, 17288.	3.3	14
44	An insight to rhizosphere bacterial community composition and structure of consecutive winter-initiated sugarcane ratoon crop in Southern China. BMC Plant Biology, 2022, 22, 74.	3.6	13
45	Effective selection and regeneration of transgenic sugarcane plants using positive selection system. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 52-61.	2.1	12
46	A new method based on SNP of nrDNA-ITS to identify Saccharum spontaneum and its progeny in the genus Saccharum. PLoS ONE, 2018, 13, e0197458.	2.5	12
47	Evolution and Expression Analysis of Starch Synthase Gene Families in Saccharum spontaneum. Tropical Plant Biology, 2019, 12, 158-173.	1.9	12
48	Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynthesis Research, 2021, 150, 279-294.	2.9	11
49	A systematic high-throughput phenotyping assay for sugarcane stalk quality characterization by near-infrared spectroscopy. Plant Methods, 2021, 17, 76.	4.3	11
50	Investigation of soil nutrients and associated rhizobacterial communities in different sugarcane genotypes in relation to sugar content. Chemical and Biological Technologies in Agriculture, 2021, 8, .	4.6	11
51	Untangling the Rhizosphere Bacterial Community Composition and Response of Soil Physiochemical Properties to Different Nitrogen Applications in Sugarcane Field. Frontiers in Microbiology, 2022, 13, 856078.	3.5	11
52	Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. Frontiers in Plant Science, 2017, 8, 924.	3.6	10
53	Chromosome transmission in BC4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Scientific Reports, 2019, 9, 2528.	3.3	10
54	Response of Soil Fungal Community to Drought-Resistant Ea-DREB2B Transgenic Sugarcane. Frontiers in Microbiology, 2020, 11, 562775.	3.5	10

#	Article	IF	CITATIONS
55	Selective Interaction of Sugarcane eIF4E with VPgs from Sugarcane Mosaic Pathogens. Viruses, 2021, 13, 518.	3.3	10
56	Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection. International Journal of Molecular Sciences, 2021, 22, 13574.	4.1	10
57	Transcriptomic analysis reveals root metabolic alteration and induction of huanglongbing resistance by sulphonamide antibiotics in huanglongbingâ€affected citrus plants. Plant Pathology, 2020, 69, 733-743.	2.4	9
58	Precise high-throughput online near-infrared spectroscopy assay to determine key cell wall features associated with sugarcane bagasse digestibility. Biotechnology for Biofuels, 2021, 14, 123.	6.2	9
59	First Report of <i>Fusarium oxysporum</i> Isolate gx3 Causing Sugarcane Pokkah Boeng in Guangxi of China. Plant Disease, 2016, 100, 1785-1785.	1.4	9
60	First Report of Fusarium andiyazi Causing Sugarcane Pokkah Boeng Disease in China. Plant Disease, 2020, 104, 286-286.	1.4	9
61	ScGAIL, a sugarcane N-terminal truncated DELLA-like protein, participates in gibberellin signaling in Arabidopsis. Journal of Experimental Botany, 2022, 73, 3462-3476.	4.8	8
62	Analysis of Disequilibrium Hybridization in Hybrid and Backcross Progenies of Saccharum officinarum × Erianthus arundinaceus. Agricultural Sciences in China, 2010, 9, 1271-1277.	0.6	7
63	First Report of <i>Fusarium sacchari</i> That Causes Sugarcane Wilt Disease in China. Plant Disease, 2020, 104, 2289-2289.	1.4	7
64	Metabolic and proteomic analysis of nitrogen metabolism mechanisms involved in the sugarcane – Fusarium verticillioides interaction. Journal of Plant Physiology, 2020, 251, 153207.	3.5	7
65	Field Evaluation of Chemotherapy on HLB-Affected Citrus Trees With Emphasis on Fruit Yield and Quality. Frontiers in Plant Science, 2021, 12, 611287.	3.6	7
66	Phosphomannose isomerase affects the key enzymes of glycolysis and sucrose metabolism in transgenic sugarcane overexpressing the manA gene. Molecular Breeding, 2015, 35, 100.	2.1	6
67	Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery. Sensors, 2022, 22, 2711.	3.8	6
68	Function Analysis of Sugarcane A20/AN1 Zincâ€Finger Protein Gene <i>ShSAP1</i> in Transgenic Tobacco. Crop Science, 2014, 54, 2724-2734.	1.8	5
69	Development and Evaluation of SSR Markers Based on Large Scale Full-Length Transcriptome Sequencing in Sugarcane. Tropical Plant Biology, 2020, 13, 343-352.	1.9	5
70	A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp Scientific Reports, 2020, 10, 5016.	3.3	5
71	Considerations regarding centromere assembly in plant whole-genome sequencing. Methods, 2021, 187, 54-56.	3.8	5
72	Molecular marker application in sugarcane. Sugar Tech, 2004, 6, 251-259.	1.8	4

#	Article	IF	CITATIONS
73	Fusarium Species Complex Causing Pokkah Boeng in China. , 0, , .		4
74	Fungal deterioration of the bagasse storage from the harvested sugarcane. Biotechnology for Biofuels, 2021, 14, 152.	6.2	4
75	Quantitative evaluation of variation in defoliation traits among sugarcane genotypes. PLoS ONE, 2018, 13, e0196071.	2.5	3
76	Photosynthesis-related protein expression in sugarcane during sugarcane–Fusarium verticillioides interaction revealed by iTRAQ. Plant Growth Regulation, 2020, 91, 237-248.	3.4	3
77	First Report of Stalk Bacterial Soft Rot of Sugarcane Caused by Dickeya zeae in China. Plant Disease, 2021, 105, 1188-1188.	1.4	3
78	Field Evaluation of New Promising Sugarcane Cultivars for Cold Tolerance in Guangxi, China. Sugar Tech, 2020, 22, 1007-1017.	1.8	2
79	High-Quality Genome Sequence Resource for Fusarium andiyazi Causing Pokkah Boeng Disease of Sugarcane in China. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-11-20-0331.	2.6	2
80	Authenticity Identification of Saccharum officinarum and Saccharum spontaneum Germplasm Materials. Agronomy, 2022, 12, 819.	3.0	2
81	The alleviation of manganese toxicity by ammonium in sugarcane is related to pectin content, pectin methyl esterification, and nitric oxide. GCB Bioenergy, 0, , .	5.6	2
82	Key Role of Heat Shock Protein Expression Induced by Ampicillin in Citrus Defense against Huanglongbing: A Transcriptomics Study. Agronomy, 2022, 12, 1356.	3.0	2
83	Genome Sequence of Phoma sorghina var. saccharum That Causes Sugarcane Twisted Leaf Disease in China. Molecular Plant-Microbe Interactions, 2020, 33, 1092-1094.	2.6	1
84	Repetitive Sequence Barcode Probe for Karyotype Analysis in Tripidium arundinaceum. International Journal of Molecular Sciences, 2022, 23, 6726.	4.1	1
85	Sequence analysis of Erianthus arundinaceus chromosome 1 isolated by flow sorting after genomic in situ hybridization in suspension. Crop Journal, 2022, , .	5.2	0
86	Quantitative estimating nutrient uptake requirements for sugarcane based on QUEFTS model in China. Journal of Plant Nutrition, 2022, 45, 1504-1515.	1.9	0
87	Diversity Chromosome Evolution of Ty1-copia Retrotransposons in Pennisetum purpureum Revealed by FISH. Agronomy, 2022, 12, 1312.	3.0	0
88	Devious Phloem Intruder <i>Candidatus</i> Liberibacter Species Causing Huanglongbing: History, Symptoms, Mechanism, and Current Strategies., 0, , .		0