
Kazuyuki Nakagome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophilic Inflammation in Severe Asthma. International Archives of Allergy and Immunology, 2012, 158, 96-102.	2.1	125
2	Involvement and Possible Role of Eosinophils in Asthma Exacerbation. Frontiers in Immunology, 2018, 9, 2220.	4.8	122
3	Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx, 2011, 38, 555-563.	1.2	108
4	Effects of rhinovirus species on viral replication and cytokine production. Journal of Allergy and Clinical Immunology, 2014, 134, 332-341.e10.	2.9	98
5	A Novel Role of Cysteinyl Leukotrienes to Promote Dendritic Cell Activation in the Antigen-Induced Immune Responses in the Lung. Journal of Immunology, 2004, 173, 6393-6402.	0.8	74
6	Dopamine D1-Like Receptor Antagonist Attenuates Th17-Mediated Immune Response and Ovalbumin Antigen-Induced Neutrophilic Airway Inflammation. Journal of Immunology, 2011, 186, 5975-5982.	0.8	74
7	Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx, 2011, 38, 555-563.	1.2	60
8	IFN-Î ³ Attenuates Antigen-Induced Overall Immune Response in the Airway As a Th1-Type Immune Regulatory Cytokine. Journal of Immunology, 2009, 183, 209-220.	0.8	50
9	Periostin upregulates the effector functions of eosinophils. Journal of Allergy and Clinical Immunology, 2016, 138, 1449-1452.e5.	2.9	49
10	Implication of fraction of exhaled nitric oxide and blood eosinophil count in severe asthma. Allergology International, 2018, 67, S3-S11.	3.3	36
11	IFN-Î ³ -inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2integrin and CXCR3. Respiratory Research, 2011, 12, 138.	3.6	35
12	Effect of Formoterol on Eosinophil Trans-Basement Membrane Migration Induced by Interleukin-8-Stimulated Neutrophils. International Archives of Allergy and Immunology, 2013, 161, 10-15.	2.1	35
13	Mechanisms of eosinophilic inflammation. Asia Pacific Allergy, 2020, 10, e14.	1.3	35
14	Early Interleukin 4–Dependent Response Can Induce Airway Hyperreactivity before Development of Airway Inflammation in a Mouse Model of Asthma. Laboratory Investigation, 2001, 81, 1385-1396.	3.7	30
15	Noninvasive system for evaluating allergen-induced nasal hypersensitivity in murine allergic rhinitis. Laboratory Investigation, 2006, 86, 917-926.	3.7	30
16	Antigen-sensitized CD4+CD62Llow memory/effector T helper 2 cells can induce airway hyperresponsiveness in an antigen free setting. Respiratory Research, 2005, 6, 46.	3.6	26
17	Allergen Immunotherapy in Asthma: Current Status and Future Perspectives. Allergology International, 2010, 59, 15-19.	3.3	25
18	ATP drives eosinophil effector responses through P2 purinergic receptors. Allergology International, 2015, 64, S30-S36.	3.3	25

ΚΑΖUYUKI ΝΑΚΑGOME

#	Article	IF	CITATIONS
19	IL-5-Induced Hypereosinophilia Suppresses the Antigen-Induced Immune Response via a TGF-Î ² -Dependent Mechanism. Journal of Immunology, 2007, 179, 284-294.	0.8	20
20	CXC chemokine superfamily induced by Interferon-Î ³ in asthma: a cross-sectional observational study. Asthma Research and Practice, 2016, 2, 6.	2.4	20
21	Innate Immune Responses by Respiratory Viruses, Including Rhinovirus, During Asthma Exacerbation. Frontiers in Immunology, 0, 13, .	4.8	20
22	Production, purification, and capsid stability of rhinovirus C types. Journal of Virological Methods, 2015, 217, 18-23.	2.1	18
23	Possible Mechanisms of Eosinophil Accumulation in Eosinophilic Pneumonia. Biomolecules, 2020, 10, 638.	4.0	18
24	Trans-basement membrane migration of eosinophils induced by LPS-stimulated neutrophils from human peripheral blood <i>in vitro</i> . ERJ Open Research, 2015, 1, 00003-2015.	2.6	17
25	Wogonin Attenuates Ovalbumin Antigen-Induced Neutrophilic Airway Inflammation by Inhibiting Th17 Differentiation. International Journal of Inflammation, 2014, 2014, 1-8.	1.5	15
26	Effect of beta2-adrenergic agonists on eosinophil adhesion, superoxide anion generation, and degranulation. Allergology International, 2015, 64, S46-S53.	3.3	15
27	Elderly-onset hereditary pulmonary alveolar proteinosis and its cytokine profile. BMC Pulmonary Medicine, 2017, 17, 40.	2.0	15
28	Salbutamol Modulates the Balance of Th1 and Th2 Cytokines by Mononuclear Cells from Allergic Asthmatics. International Archives of Allergy and Immunology, 2010, 152, 32-40.	2.1	13
29	Implications of prostaglandin D2 and leukotrienes in exhaled breath condensates of asthma. Annals of Allergy, Asthma and Immunology, 2019, 123, 81-88.e1.	1.0	11
30	Sublingual Immunotherapy for Japanese Cedar Pollinosis Attenuates Asthma Exacerbation. Allergy, Asthma and Immunology Research, 2019, 11, 438.	2.9	10
31	Elevated uric acid and adenosine triphosphate concentrations in bronchoalveolar lavage fluid of eosinophilic pneumonia. Allergology International, 2017, 66, S27-S34.	3.3	9
32	Clinical evaluation of rush immunotherapy using house dust mite allergen in Japanese asthmatics. Asia Pacific Allergy, 2021, 11, e32.	1.3	9
33	Allergen Immunotherapy in Asthma. Pathogens, 2021, 10, 1406.	2.8	9
34	Changes in Airway Inflammation and Hyperresponsiveness after Inhaled Corticosteroid Cessation in Allergic Asthma. International Archives of Allergy and Immunology, 2010, 152, 41-46.	2.1	8
35	Eosinophil transendothelial migration induced by the bronchoalveolar lavage fluid of acute eosinophilic pneumonia. Respirology, 2017, 22, 913-921.	2.3	8
36	<i>Dermatophagoides farinae</i> Upregulates the Effector Functions of Eosinophils through αMβ ₂ -Integrin and Protease-Activated Receptor-2. International Archives of Allergy and Immunology, 2019, 178, 295-306.	2.1	7

ΚΑΖUYUKI ΝΑΚΑGOME

#	Article	IF	CITATIONS
37	Relationship between airway inflammation and airflow limitation in elderly asthmatics. Asia Pacific Allergy, 2020, 10, e17.	1.3	7
38	Effect of LTRA on IP-10-induced eosinophil adhesion to ICAM-1. Allergology International, 2016, 65, S62-S64.	3.3	5
39	Effects of β2-adrenergic agonists on house dust mite-induced adhesion, superoxide anion generation, and degranulation of human eosinophils. Asia Pacific Allergy, 2020, 10, e15.	1.3	5
40	Eicosanoids in exhaled breath condensate of airway inflammation in patients with asthma. Allergology International, 2016, 65, S65-S66.	3.3	4
41	Elevated Periostin Concentrations in the Bronchoalveolar Lavage Fluid of Patients with Eosinophilic Pneumonia. International Archives of Allergy and Immunology, 2019, 178, 264-271.	2.1	4
42	Eicosanoids seasonally impact pulmonary function in asthmatic patients with Japanese cedar pollinosis. Allergology International, 2020, 69, 594-600.	3.3	4
43	Treatment Resistance in Severe Asthma Patients With a Combination of High Fraction of Exhaled Nitric Oxide and Low Blood Eosinophil Counts. Frontiers in Pharmacology, 2022, 13, 836635.	3.5	4
44	Interleukinâ€8 produced by T cells is under the control of dopamine signaling. Clinical and Experimental Neuroimmunology, 2018, 9, 251-257.	1.0	3
45	Cadherinâ€related family member 3 upregulates the effector functions of eosinophils. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1805-1809.	5.7	3
46	Role of Allergen Immunotherapy in Asthma Treatment and Asthma Development. Allergies, 2021, 1, 33-45.	0.8	3
47	Japanese cedar pollen upregulates the effector functions of eosinophils. Asia Pacific Allergy, 2021, 11, e26.	1.3	3
48	Effects of β2-adrenergic agonists on periostin-induced adhesion, superoxide anion generation, and degranulation of human eosinophils. Allergology International, 2018, 67, S48-S50.	3.3	2
49	Predictors of adherence to sublingual immunotherapy for Japanese cedar pollinosis: a prospective analysis. Asian Pacific Journal of Allergy and Immunology, 2020, , .	0.4	2
50	Comparison of extra-fine-particle inhalational corticosteroid add-on therapy with dose-escalation of large-particle inhalational corticosteroid therapy in patients with incompletely controlled asthma. Allergology International, 2019, 68, S17-S19.	3.3	1
51	Modified eosinophil adhesion in pulmonary alveolar proteinosis caused by CSF2RA deletion. Allergology International, 2019, 68, S14-S16.	3.3	1
52	The proton ATPase inhibitor bafilomycin A1 reduces the release of rhinovirus C and cytokines from primary cultures of human nasal epithelial cells. Virus Research, 2021, 304, 198548.	2.2	1
53	Coenzyme A Contained in mothers' Milk Is Associated with the Potential to Induce Atopic Dermatitis. Blood, 2011, 118, 1097-1097.	1.4	0