Wei-Qi He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683147/publications.pdf

Version: 2024-02-01

393982 377514 1,624 45 19 34 citations h-index g-index papers 45 45 45 2389 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Selective Inhibition of $11\hat{1}^2$ -Hydroxysteroid Dehydrogenase Type 1 Attenuates High-Fat Diet-Induced Hepatic Steatosis in Mice. Drug Design, Development and Therapy, 2021, Volume 15, 2309-2324.	2.0	3
2	MYPT1 Down-regulation by Lipopolysaccharide-SIAH1/2 E3 Ligase-Ubiquitin-Proteasomal Degradation Contributes to Colonic Obstruction of Hirschsprung Disease. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 345-347.e6.	2.3	1
3	Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genetics, 2020, 16, e1009040.	1.5	8
4	Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis. International Journal of Molecular Sciences, 2020, 21, 993.	1.8	75
5	Quantification of Proliferative and Dead Cells in Enteroids. Journal of Visualized Experiments, 2020, , .	0.2	1
6	Aldh inhibitor restores auditory function in a mouse model of human deafness., 2020, 16, e1009040.		0
7	Aldh inhibitor restores auditory function in a mouse model of human deafness. , 2020, 16, e1009040.		O
8	Aldh inhibitor restores auditory function in a mouse model of human deafness., 2020, 16, e1009040.		0
9	Aldh inhibitor restores auditory function in a mouse model of human deafness. , 2020, 16, e1009040.		O
10	Aldh inhibitor restores auditory function in a mouse model of human deafness., 2020, 16, e1009040.		0
11	Aldh inhibitor restores auditory function in a mouse model of human deafness. , 2020, 16, e1009040.		O
12	Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 255-274.	2.3	67
13	Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nature Medicine, 2019, 25, 690-700.	15.2	102
14	In Vitro and In Vivo Approaches to Determine Intestinal Epithelial Cell Permeability. Journal of Visualized Experiments, 2018 , , .	0.2	24
15	Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation. Oncology Reports, 2017, 37, 1419-1429.	1.2	32
16	Myosin regulatory light chain phosphorylation is associated with leiomyosarcoma development. Biomedicine and Pharmacotherapy, 2017, 92, 810-818.	2.5	5
17	IL-22ÂUpregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host and Microbe, 2017, 21, 671-681.e4.	5.1	178
18	Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell International, 2017, 17, 35.	1.8	32

#	Article	IF	CITATIONS
19	Physiological <i>vs</i> . pharmacological signalling to myosin phosphorylation in airway smooth muscle. Journal of Physiology, 2017, 595, 6231-6247.	1.3	13
20	The molecular basis of the genesis of basal tone in internal anal sphincter. Nature Communications, 2016, 7, 11358.	5.8	26
21	Characterization of isoform expression and subcellular distribution of MYPT1 in intestinal epithelial cells. Gene, 2016, 588, 1-6.	1.0	10
22	Physiological signalling to myosin phosphatase targeting subunitâ€1 phosphorylation in ileal smooth muscle. Journal of Physiology, 2016, 594, 3209-3225.	1.3	19
23	<i>In vivo</i> roles for myosin phosphatase targeting subunitâ€1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. Journal of Physiology, 2015, 593, 681-700.	1.3	55
24	Myosin Light Chain Kinase (MLCK) Regulates Cell Migration in a Myosin Regulatory Light Chain Phosphorylation-independent Mechanism. Journal of Biological Chemistry, 2014, 289, 28478-28488.	1.6	53
25	Myosin Phosphatase Target Subunit 1 (MYPT1) Regulates the Contraction and Relaxation of Vascular Smooth Muscle and Maintains Blood Pressure. Journal of Biological Chemistry, 2014, 289, 22512-22523.	1.6	87
26	Constitutive phosphorylation of myosin phosphatase targeting subunitâ€1 in smooth muscle. Journal of Physiology, 2014, 592, 3031-3051.	1.3	22
27	Reply. Gastroenterology, 2013, 145, 1495.	0.6	0
28	Altered Contractile Phenotypes of Intestinal Smooth Muscle in Mice Deficient in Myosin Phosphatase Target Subunit 1. Gastroenterology, 2013, 144, 1456-1465.e5.	0.6	62
29	Signaling through Myosin Light Chain Kinase in Smooth Muscles. Journal of Biological Chemistry, 2013, 288, 7596-7605.	1.6	57
30	IgCAM domain 3 is necessary for basal and TNFâ€induced MLCK1 trafficking in intestinal epithelial cells. FASEB Journal, 2013, 27, 949.3.	0.2	2
31	Myosin Light-Chain Kinase Is Necessary for Membrane Homeostasis in Cochlear Inner Hair Cells. PLoS ONE, 2012, 7, e34894.	1.1	7
32	Deletion of myosin light chain kinase in endothelial cells has a minor effect on the lipopolysaccharideâ€induced increase in microvascular endothelium permeability in mice. FEBS Journal, 2012, 279, 1485-1494.	2.2	15
33	Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections. American Journal of Human Genetics, 2011, 88, 516.	2.6	2
34	One-Step Construction of Lentiviral Reporter Using Red-Mediated Recombination. Molecular Biotechnology, 2011, 49, 278-282.	1.3	3
35	Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H584-H591.	1.5	55
36	Fractional activation of myosin light chain kinase is sufficient for robust smooth muscle contraction. FASEB Journal, 2011, 25, 1115.8.	0.2	0

#	Article	IF	Citations
37	MLCK Deletion Enhances Intestinal Smooth Muscle Cells Migration by Reducing Cell Membrane Tension. FASEB Journal, 2011, 25, .	0.2	0
38	Characterization of in vivo Function of Myosin light Chain Kinase in Internal Anal Sphincter Contraction. FASEB Journal, 2011, 25, 1059.6.	0.2	0
39	Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections. American Journal of Human Genetics, 2010, 87, 701-707.	2.6	267
40	Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction. Journal of Biological Chemistry, 2010, 285, 5522-5531.	1.6	66
41	Trio Is a Key Guanine Nucleotide Exchange Factor Coordinating Regulation of the Migration and Morphogenesis of Granule Cells in the Developing Cerebellum. Journal of Biological Chemistry, 2010, 285, 24834-24844.	1.6	75
42	Identification and functional characterization of an aggregation domain in long myosin light chain kinase. FEBS Journal, 2008, 275, 2489-2500.	2.2	8
43	Myosin Light Chain Kinase Is Central to Smooth Muscle Contraction and Required for Gastrointestinal Motility in Mice. Gastroenterology, 2008, 135, 610-620.e2.	0.6	161
44	Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase. Cell Research, 2006, 16, 367-376.	5.7	21
45	Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Frontiers in Nutrition, 0, 9, .	1.6	10