Ashta C Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683055/publications.pdf

Version: 2024-02-01

18	554	12	18
papers	citations	h-index	g-index
18	18	18	884
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO ₂ Photoreduction. Journal of the American Chemical Society, 2022, 144, 3626-3636.	13.7	57
2	Finding the Sweet Spot of Photocatalysisâ" €A Case Study Using Bipyridine-Based CTFs. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14182-14192.	8.0	22
3	Spin crossover and cooperativity in nanocrystalline [Fe(pyrazine)Pt(CN)4] thin films deposited by matrix-assisted laser evaporation. Applied Surface Science, 2021, 541, 148419.	6.1	9
4	Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coordination Chemistry Reviews, 2021, 428, 213606.	18.8	74
5	Molecular Porous Photosystems Tailored for Longâ€Term Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 5116-5122.	13.8	60
6	Molecular Porous Photosystems Tailored for Longâ€∓erm Photocatalytic CO 2 Reduction. Angewandte Chemie, 2020, 132, 5154-5160.	2.0	15
7	An Asymmetrically Substituted Aliphatic Bis-Dithiolene Mono-Oxido Molybdenum(IV) Complex With Ester and Alcohol Functions as Structural and Functional Active Site Model of Molybdoenzymes. Frontiers in Chemistry, 2019, 7, 486.	3.6	8
8	Nanocrystalline Polymer Impregnated [Fe(pz)Pt(CN)4] Thin Films Prepared by Matrix-Assisted Pulsed Laser Evaporation. European Journal of Inorganic Chemistry, 2019, 2019, 3249-3255.	2.0	12
9	Hexanuclear Fe(III) wheels functionalized by amino-acetonitrile derivatives. Solid State Sciences, 2018, 78, 156-162.	3.2	3
10	Synthesis, $M\tilde{A}\P$ ssbauer, cyclic voltammetry, magnetic properties and molecular structures of the low-spin iron(III) bis(pyrazine) complexes with the para-fluoro and para-chloro substituted meso-tetraphenylporphyrin. Inorganica Chimica Acta, 2018, 477, 114-121.	2.4	7
11	Synthesis, characterization and oxygen atom transfer reactivity of a pair of Mo(<scp>iv</scp>)O- and Mo(<scp>vi</scp>)O ₂ -enedithiolate complexes – a look at both ends of the catalytic transformation. Dalton Transactions, 2017, 46, 7523-7533.	3.3	19
12	Selective Capture of Ni2+Ions by Naphthalene- and Coumarin-Substituted Dithiolenes. European Journal of Inorganic Chemistry, 2016, 2016, 208-218.	2.0	12
13	Selectively detecting Hg2+ – A "mercury quick test―with bis-(coumarin–dithiolene) niccolate. Inorganica Chimica Acta, 2016, 445, 149-154.	2.4	12
14	Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chemical Communications, 2016, 52, 2831-2834.	4.1	128
15	The ring opening reaction of 1,3-dithiol-2-one systems is fully reversible. Chemical Communications, 2014, 50, 10102-10104.	4.1	6
16	The unexpected and facile molybdenum mediated formation of tri- and tetracyclic pentathiepins from pyrazine-alkynes and sulfur. Chemical Communications, 2013, 49, 4343-4345.	4.1	12
17	A Metal–Organic Framework with Highly Polar Pore Surfaces: Selective CO ₂ Adsorption and Guestâ€Dependent On/Off Emission Properties. Chemistry - A European Journal, 2012, 18, 237-244.	3.3	69
18	A Vanadium (VO2+) Metal–Organic Framework: Selective Vapor Adsorption, Magnetic Properties, and Use as a Precursor for a Polyoxovanadate. Inorganic Chemistry, 2011, 50, 5145-5152.	4.0	29