Cansu E Gumus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8683008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural emulsifiers — Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 2016, 234, 3-26.	7.0	676
2	Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophysics, 2017, 12, 186-197.	1.4	104
3	Lutein-enriched emulsion-based delivery systems: Impact of Maillard conjugation on physicochemical stability and gastrointestinal fate. Food Hydrocolloids, 2016, 60, 38-49.	5.6	101
4	Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins. Food Research International, 2017, 100, 175-185.	2.9	99
5	Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry, 2016, 196, 821-827.	4.2	86
6	Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. Journal of Food Engineering, 2017, 211, 60-68.	2.7	79
7	Gastrointestinal fate of emulsion-based ω-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering, 2017, 207, 90-98.	2.7	60
8	The Efficacy of Nanoemulsionâ€Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies. Molecular Nutrition and Food Research, 2018, 62, 1700836.	1.5	59
9	Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends in Food Science and Technology, 2021, 110, 267-279.	7.8	43
10	In vitro digestion of edible nanostructured lipid carriers: Impact of a Candelilla wax gelator on performance. Food Research International, 2021, 140, 110060.	2.9	11
11	Oxidation in Low Moisture Foods as a Function of Surface Lipids and Fat Content. Foods, 2021, 10, 860.	1.9	7
12	Separation of squalene from olive oil deodorizer distillate using <scp>shortâ€path</scp> molecular distillation. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 175-179.	0.8	7
13	Differentiation of Mechanically and Chemically Extracted Hazelnut Oils Based on their Sterol and Wax Profiles. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1625-1635.	0.8	6
14	The efficacy of nanoâ€emulsification to improve vitamin D bioaccessibility. FASEB Journal, 2017, 31, 801.4.	0.2	0