S Mahdi Hamidinejad

List of Publications by Citations

Source: https://exaly.com/author-pdf/8682840/s-mahdi-hamidinejad-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 28 1,121 15 h-index g-index citations papers 28 1,584 5.03 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
26	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20873-20884	9.5	185
25	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. <i>Carbon</i> , 2018 , 127, 469-478	10.4	124
24	Incorporating a microcellular structure into PVDF/graphenellanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10292-10300	7.1	113
23	Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 30752-30761	9.5	99
22	Enhanced Thermal Conductivity of Graphene Nanoplatelet-Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 1225-1	2 <i>36</i> 5	88
21	Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. <i>Carbon</i> , 2020 , 156, 58-66	10.4	84
20	A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 133-140	13	80
19	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 58-70	7.1	73
18	Ultralight Microcellular Polymer-Graphene Nanoplatelet Foams with Enhanced Dielectric Performance. <i>ACS Applied Materials & Dielectric</i> (2018), 10, 19987-19998	9.5	61
17	Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. <i>Composites Part B: Engineering</i> , 2020 , 183, 107663	10	37
16	Advances in electromagnetic shielding properties of composite foams. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 8896-8949	13	34
15	Ratcheting of 304 stainless steel under multiaxial step-loading conditions. <i>International Journal of Mechanical Sciences</i> , 2015 , 100, 80-89	5.5	19
14	CO2 laser welding of interstitial free galvanized steel sheets used in tailor welded blanks. International Journal of Advanced Manufacturing Technology, 2013, 64, 195-206	3.2	19
13	Facilitating supercritical CO2 assisted exfoliation of graphene nanoplatelets with the polymer matrix. <i>Chemical Engineering Journal</i> , 2020 , 394, 124930	14.7	18
12	Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. <i>ACS Applied Materials & ACS Applied & ACS A</i>	9.5	18
11	Ratcheting of 304 Stainless Steel Alloys subjected to Stress-Controlled and mixed Stress- and Strain-Controlled Conditions evaluated by Kinematic Hardening Rules. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2016 , 39, 238-250	3	12
10	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. <i>Nano-Micro Letters</i> , 2021 , 14, 19	19.5	11

LIST OF PUBLICATIONS

9	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. <i>Carbon</i> , 2021 , 179, 408-416	10.4	11
8	Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. <i>Carbon</i> , 2021 , 174, 305-316	10.4	11
7	Maintaining electrical conductivity of microcellular MWCNT/TPU composites after deformation. <i>Composites Part B: Engineering</i> , 2021 , 223, 109113	10	8
6	Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. <i>Carbon</i> , 2021 ,	10.4	5
5	Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules,	5.5	3
4	Thermally conductive polymer-graphene nanoplatelet composite foams 2019,		1
3	Molecular engineering of the surface of boron nitride nanotubes for manufacture of thermally conductive dielectric polymer composites. <i>Applied Surface Science</i> , 2022 , 152779	6.7	1
2	Scalable Characterization of 2D Gallium-Intercalated Epitaxial Graphene. <i>ACS Applied Materials</i> & Samp; Interfaces, 2021 , 13, 55428-55439	9.5	1
1	Sectorization of Macromolecular Single Crystals Unveiled by Probing Shear Anisotropy <i>ACS Macro Letters</i> , 2022 , 11, 53-59	6.6	