Xiaoli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682738/publications.pdf

Version: 2024-02-01

331670 330143 1,491 39 21 37 h-index citations g-index papers 40 40 40 2397 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomaterialia, 2019, 85, 1-26.	8.3	142
2	Design and synthesis of organic–inorganic hybrid capsules for biotechnological applications. Chemical Society Reviews, 2014, 43, 5192.	38.1	137
3	Facile One-Pot Preparation of Chitosan/Calcium Pyrophosphate Hybrid Microflowers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14522-14532.	8.0	124
4	Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis, 2014, 4, 962-972.	11.2	120
5	Nanoscale Reduced Graphene Oxide-Mediated Photothermal Therapy Together with IDO Inhibition and PD-L1 Blockade Synergistically Promote Antitumor Immunity. ACS Applied Materials & Interfaces, 2019, 11, 1876-1885.	8.0	109
6	Metal–Organic Coordination-Enabled Layer-by-Layer Self-Assembly to Prepare Hybrid Microcapsules for Efficient Enzyme Immobilization. ACS Applied Materials & Interfaces, 2012, 4, 3476-3483.	8.0	80
7	Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19570-19578.	8.0	64
8	Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials, 2020, 255, 120199.	11.4	63
9	ROS-responsive capsules engineered from green tea polyphenol–metal networks for anticancer drug delivery. Journal of Materials Chemistry B, 2018, 6, 1000-1010.	5.8	53
10	Synergy of Pickering Emulsion and Solâ€Gel Process for the Construction of an Efficient, Recyclable Enzyme Cascade System. Advanced Functional Materials, 2013, 23, 1450-1458.	14.9	52
11	ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioactive Materials, 2021, 6, 1-11.	15.6	51
12	Improved vaccine-induced immune responses <i>via</i> a ROS-triggered nanoparticle-based antigen delivery system. Nanoscale, 2018, 10, 9489-9503.	5.6	46
13	Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials, 2021, 268, 120579.	11.4	46
14	Polydopamine nanoparticles carrying tumor cell lysate as a potential vaccine for colorectal cancer immunotherapy. Biomaterials Science, 2019, 7, 3062-3075.	5.4	43
15	Nanocapsules engineered from polyhedral ZIF-8 templates for bone-targeted hydrophobic drug delivery. Biomaterials Science, 2017, 5, 658-662.	5.4	39
16	Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111378.	5.0	38
17	Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination. Acta Biomaterialia, 2019, 83, 390-399.	8.3	35
18	Chitosan/calcium phosphates nanosheet as a vaccine carrier for effective cross-presentation of exogenous antigens. Carbohydrate Polymers, 2019, 224, 115172.	10.2	26

#	Article	IF	Citations
19	3D printing of implantable elastic PLCL copolymer scaffolds. Soft Matter, 2020, 16, 2141-2148.	2.7	26
20	MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization. Journal of Materials Chemistry B, 2015, 3, 6587-6598.	5.8	24
21	Polydopamine as the Antigen Delivery Nanocarrier for Enhanced Immune Response in Tumor Immunotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 2330-2342.	5.2	23
22	Hydrogen peroxide-responsive micelles self-assembled from a peroxalate ester-containing triblock copolymer. Biomaterials Science, 2016, 4, 255-257.	5.4	19
23	Preparation of Ultrathin, Robust Protein Microcapsules through Template-Mediated Interfacial Reaction between Amine and Catechol Groups. Biomacromolecules, 2013, 14, 3861-3869.	5.4	18
24	A Generic Coordination Assemblyâ€Enabled Nanocoating of Individual Tumor Cells for Personalized Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1900474.	7.6	14
25	Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	13
26	Coordination microparticle vaccines engineered from tumor cell templates. Chemical Communications, 2019, 55, 1568-1571.	4.1	12
27	Surfactantâ€Stripped Micelles with Aggregationâ€Induced Enhanced Emission for Bimodal Gut Imaging In Vivo and Microbiota Tagging Ex Vivo. Advanced Healthcare Materials, 2021, 10, e2100356.	7.6	12
28	Antigenâ€Inorganic Hybrid Flowersâ€Based Vaccines with Enhanced Room Temperature Stability and Effective Anticancer Immunity. Advanced Healthcare Materials, 2019, 8, e1900660.	7.6	10
29	A Dissolvable Microneedle Formulation of <i>Bordetella pertussis</i> Subunit Vaccine: Translational Development and Immunological Evaluation in Mice. ACS Applied Bio Materials, 2019, 2, 5053-5061.	4.6	9
30	<p>Antigen-Conjugated Silica Solid Sphere as Nanovaccine for Cancer Immunotherapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2685-2697.	6.7	8
31	Synthesis and characterization of bimodal mesoporous silica. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1084-1088.	1.0	7
32	Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)–poly(ethylene glycol) for long-term sustained release. International Journal of Nanomedicine, 2018, Volume 13, 2743-2754.	6.7	7
33	Preparation and protein adsorption of hydrogel polysucrose microspheres. Journal of Applied Polymer Science, 2006, 102, 5934-5940.	2.6	6
34	Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microbial Pathogenesis, 2021, 158, 105095.	2.9	5
35	Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Frontiers of Chemical Science and Engineering, 2021, 15, 1296-1311.	4.4	3
36	Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Frontiers in Immunology, 2021, 12, 693972.	4.8	3

XIAOLI WANG

#	Article	IF	CITATIONS
37	Identification and Characterization of the Nuclease Activity of the Extracellular Proteins from Salmonella enterica Serovar Typhimurium. Current Microbiology, 2020, 77, 3651-3660.	2.2	2
38	Programmed nanoparticle-loaded microparticles for effective antigen/adjuvant delivery. Particuology, $2021,\ldots$	3.6	2
39	Maximum efficiency analysis in wireless power transfer. , 2018, , .		О