Jean-Marc Daran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682672/publications.pdf

Version: 2024-02-01

41258 49773 8,827 135 49 87 citations h-index g-index papers 149 149 149 7624 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modular, synthetic chromosomes as new tools for large scale engineering of metabolism. Metabolic Engineering, 2022, 72, $1-13$.	3.6	6
2	Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiology, 2022, 106, 104041.	2.1	5
3	Full humanization of the glycolytic pathway in Saccharomyces cerevisiae. Cell Reports, 2022, 39, 111010.	2.9	13
4	gEL DNA: A Cloning- and Polymerase Chain Reaction–Free Method for CRISPR-Based Multiplexed Genome Editing. CRISPR Journal, 2021, , .	1.4	4
5	Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae. Metabolic Engineering, 2021, 65, 11-29.	3.6	10
6	Identification of Oxygen-Independent Pathways for Pyridine Nucleotide and Coenzyme A Synthesis in Anaerobic Fungi by Expression of Candidate Genes in Yeast. MBio, 2021, 12, e0096721.	1.8	11
7	Engineering of molybdenum-cofactor-dependent nitrate assimilation in <i>Yarrowia lipolytica</i> FEMS Yeast Research, 2021, 21, .	1.1	4
8	Engineering oxygen-independent biotin biosynthesis in Saccharomyces cerevisiae. Metabolic Engineering, 2021, 67, 88-103.	3.6	5
9	Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metabolic Engineering Communications, 2021, 13, e00183.	1.9	1
10	A supernumerary designer chromosome for modular <i>in vivo</i> pathway assembly in <i>Saccharomyces cerevisiae</i> Nucleic Acids Research, 2021, 49, 1769-1783.	6. 5	20
11	Entering GATTACA: yeast genomes: analysis, insights and applications. FEMS Yeast Research, 2021, 20, .	1.1	1
12	The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrous ATCC BAA-870. BMC Genomics, 2020, 21, 3.	1.2	7
13	Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nature Communications, 2020, 11, 2144.	5.8	24
14	Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences. ACS Synthetic Biology, 2020, 9, 1361-1375.	1.9	8
15	Improving Industrially Relevant Phenotypic Traits by Engineering Chromosome Copy Number in Saccharomyces pastorianus. Frontiers in Genetics, 2020, 11, 518.	1.1	12
16	Exploring the abundance of oleate hydratases in the genus Rhodococcusâ€"discovery of novel enzymes with complementary substrate scope. Applied Microbiology and Biotechnology, 2020, 104, 5801-5812.	1.7	8
17	Vitamin requirements and biosynthesis in <i>Saccharomyces cerevisiae</i> . Yeast, 2020, 37, 283-304.	0.8	74
18	Exploiting the Diversity of Saccharomycotina Yeasts To Engineer Biotin-Independent Growth of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	1.4	9

#	Article	IF	Citations
19	Adaptive Laboratory Evolution and Reverse Engineering of Single-Vitamin Prototrophies in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	1.4	18
20	Himalayan Saccharomyces eubayanus Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
21	Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 165-180.	3.6	70
22	Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Research, 2019, 19, .	1.1	23
23	Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiology Letters, 2019, 366, .	0.7	80
24	Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. Journal of Agricultural and Food Chemistry, 2019, 67, 13478-13486.	2.4	45
25	Biological Parts for Kluyveromyces marxianus Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2019, 7, 97.	2.0	62
26	Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting. Frontiers in Microbiology, 2019, 10, 871.	1.5	8
27	Laboratory Evolution of a Saccharomyces cerevisiae $\tilde{A}-$ S. eubayanus Hybrid Under Simulated Lager-Brewing Conditions. Frontiers in Genetics, 2019, 10, 242.	1.1	35
28	In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genetics, 2019, 15, e1007853.	1.5	29
29	Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genomics, 2019, 20, 916.	1.2	43
30	Allele-specific genome editing using CRISPR–Cas9 is associated with loss of heterozygosity in diploid yeast. Nucleic Acids Research, 2019, 47, 1362-1372.	6.5	32
31	A toolkit for rapid CRISPR- <i>Sp</i> Cas9 assisted construction of hexose-transport-deficient <i>Saccharomyces cerevisiae</i> strains. FEMS Yeast Research, 2019, 19, .	1.1	25
32	Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Research, 2018, 18, .	1.1	75
33	The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 63.	6.2	29
34	Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Current Opinion in Biotechnology, 2018, 50, 47-56.	3.3	135
35	Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 121-133.	3.6	24
36	Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive l-arabinose uptake. FEMS Yeast Research, 2018, 18, .	1.1	16

#	Article	lF	Citations
37	The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Frontiers in Genetics, 2018, 9, 504.	1.1	15
38	Selection of Pof-Saccharomyces eubayanus Variants for the Construction of S. cerevisiae $\tilde{A}-S$. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation. Frontiers in Microbiology, 2018, 9, 1640.	1.5	25
39	Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357T. Frontiers in Microbiology, 2018, 9, 1786.	1.5	47
40	Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microbial Cell Factories, 2018, 17, 103.	1.9	58
41	Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research, 2018, 18, .	1.1	33
42	A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Research, 2018, 18, .	1.1	27
43	Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations. Applied and Environmental Microbiology, 2017, 83, .	1.4	30
44	Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts. Applied and Environmental Microbiology, 2017, 83, .	1.4	61
45	Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D. FEMS Yeast Research, 2017, 17, .	1.1	84
46	Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 2017, 7, 46155.	1.6	61
47	Membrane potential independent transport of NH3 in the absence of ammonium permeases in Saccharomyces cerevisiae. BMC Systems Biology, 2017, 11, 49.	3.0	17
48	Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. FEMS Yeast Research, 2017, 17, .	1.1	34
49	FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Research, 2017, 45, 12585-12598.	6.5	116
50	A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	1.1	35
51	Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Frontiers in Microbiology, 2017, 8, 1690.	1.5	36
52	CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus. Microbial Cell Factories, 2017, 16, 222.	1.9	53
53	Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol. MBio, 2016, 7, .	1.8	19
54	Pathway swapping: Toward modular engineering of essential cellular processes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15060-15065.	3.3	35

#	Article	IF	CITATIONS
55	Alternative reactions at the interface of glycolysis and citric acid cycle in <i>Saccharomyces cerevisiae </i> . FEMS Yeast Research, 2016, 16, fow017.	1.1	36
56	Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metabolic Engineering Communications, 2016, 3, 39-51.	1.9	30
57	A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnology for Biofuels, 2016, 9, 173.	6.2	109
58	Replacement of the initial steps of ethanol metabolism in <i>Saccharomyces cerevisiae</i> by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Research, 2016, 16, fow006.	1.1	13
59	Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microbial Cell Factories, 2016, 15, 51.	1.9	21
60	Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction. Scientific Reports, 2015, 5, 12846.	1.6	41
61	Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. Biotechnology for Biofuels, 2015, 8, 204.	6.2	16
62	S. cerevisiae $\tilde{A}-$ S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Research, 2015, 15, .	1.1	112
63	A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. Eukaryotic Cell, 2015, 14, 804-816.	3.4	42
64	Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 30, 130-140.	3.6	19
65	The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Research, 2015, 15, .	1.1	28
66	CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, .	1.1	360
67	Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Applied and Environmental Microbiology, 2015, 81, 6253-6267.	1.4	79
68	Increasing ATP conservation in maltose consuming yeast, a challenge for industrial organic acid production in non-aerated reactors. BMC Proceedings, 2014, 8, P185.	1.8	0
69	An alternative, arginaseâ€independent pathway for arginine metabolism in <scp><i>K</i></scp> <i>luyveromyces lactis</i> involves guanidinobutyrase as a key enzyme. Molecular Microbiology, 2014, 93, 369-389.	1.2	19
70	Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis. BMC Microbiology, 2014, 14, 114.	1.3	12
71	Polycistronic expression of a \hat{l}^2 -carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to \hat{l}^2 -ionone production. Journal of Biotechnology, 2014, 192, 383-392.	1.9	110
72	Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Engineering, 2014, 21, 46-59.	3.6	93

#	Article	IF	CITATIONS
73	Deletion of the <i>Saccharomyces cerevisiae ARO8 </i> gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast, 2014, 32, n/a-n/a.	0.8	35
74	Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 741-754.	1.1	27
75	Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae. MBio, 2014, 5, e01696-14.	1.8	84
76	Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnology for Biofuels, 2013, 6, 48.	6.2	68
77	A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microbial Cell Factories, 2013, 12, 47.	1.9	102
78	Longâ€term adaptation of <i>Saccharomyces cerevisiae</i> to the burden of recombinant insulin production. Biotechnology and Bioengineering, 2013, 110, 2749-2763.	1.7	29
79	Functional analysis and transcriptional regulation of two orthologs of <i>ARO10 < /i >, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast <i>Saccharomyces pastorianus < /i > CBS1483. FEMS Yeast Research, 2013, 13, 505-517.</i></i>	1.1	39
80	Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels, 2013, 6, 125.	6.2	117
81	Genome duplication and mutations in <i>ACE2</i> cause multicellular, fast-sedimenting phenotypes in evolved <i>Saccharomyces cerevisiae</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4223-31.	3.3	100
82	<i>amdSYM</i> , a new dominant recyclable marker cassette for <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 126-139.	1.1	143
83	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	2.0	6
84	Resolving Phenylalanine Metabolism Sheds Light on Natural Synthesis of Penicillin G in Penicillium chrysogenum. Eukaryotic Cell, 2013, 12, 151-151.	3.4	0
85	One-step assembly and targeted integration of multigene constructs assisted by the I-Scel meganuclease in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 769-781.	1.1	49
86	Impact of Velvet Complex on Transcriptome and Penicillin G Production in Glucose-Limited Chemostat Cultures of a \hat{l}^2 -Lactam High-Producing <i>Penicillium chrysogenum</i> Strain. OMICS A Journal of Integrative Biology, 2012, 16, 320-333.	1.0	27
87	<i>De novo</i> detection of copy number variation by co-assembly. Bioinformatics, 2012, 28, 3195-3202.	1.8	69
88	Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2012, 78, 7538-7548.	1.4	81
89	Resolving Phenylalanine Metabolism Sheds Light on Natural Synthesis of Penicillin G in Penicillium chrysogenum. Eukaryotic Cell, 2012, 11, 238-249.	3.4	24
90	Laboratory evolution of new lactate transporter genes in a jen1 \hat{l} " mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Research, 2012, 12, n/a-n/a.	1.1	33

#	Article	IF	CITATIONS
91	Metabolic engineering of \hat{l}^2 -oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metabolic Engineering, 2012, 14, 437-448.	3.6	26
92	An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 131.	1.9	76
93	De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 155.	1.9	302
94	De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microbial Cell Factories, 2012, 11, 36.	1.9	238
95	In vivo analysis of Saccharomyces cerevisiae plasma membrane ATPase Pma1p isoforms with increased in vitro H+/ATP stoichiometry. Antonie Van Leeuwenhoek, 2012, 102, 401-406.	0.7	9
96	Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Research, 2012, 12, 183-196.	1.1	75
97	Laboratory evolution of new lactate transporter genes in a jen1î" mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Research, 2012, 12, 359-374.	1.1	56
98	Predicting Metabolic Fluxes Using Gene Expression Differences As Constraints. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 206-216.	1.9	52
99	Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the \hat{I}^2 -lactam producer Penicillium chrysogenum. Fungal Genetics and Biology, 2011, 48, 831-839.	0.9	23
100	Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metabolic Engineering, 2011, 13, 518-526.	3.6	49
101	Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metabolic Engineering, 2011, 13, 694-703.	3.6	98
102	Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach. BMC Systems Biology, 2011, 5, 132.	3.0	27
103	Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A. BMC Genomics, 2011, 12, 405.	1.2	23
104	Heterologous carotenoid production in <i>Saccharomyces cerevisiae</i> induces the pleiotropic drug resistance stress response. Yeast, 2010, 27, 983-998.	0.8	76
105	Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 $\hat{a} \in f$ and other anaerobically upregulated genes in Saccharomyces cerevisiae. FEMS Yeast Research, 2010, 10, 367-384.	1.1	4
106	Involvement of Vacuolar Sequestration and Active Transport in Tolerance of <i>Saccharomycescerevisiae</i> to Hop Iso-l±-Acids. Applied and Environmental Microbiology, 2010, 76, 318-328.	1.4	40
107	Integrating genome assemblies with MAIA. Bioinformatics, 2010, 26, i433-i439.	1.8	45
108	The Penicillium chrysogenum aclA gene encodes a broad-substrate-specificity acyl-coenzyme A ligase involved in activation of adipic acid, a side-chain precursor for cephem antibiotics. Fungal Genetics and Biology, 2010, 47, 33-42.	0.9	36

#	Article	IF	CITATIONS
109	Identity of the Growth-Limiting Nutrient Strongly Affects Storage Carbohydrate Accumulation in Anaerobic Chemostat Cultures of <i>Saccharomyces cerevisiae</i> Microbiology, 2009, 75, 6876-6885.	1.4	33
110	Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics, 2009, 10, 53.	1,2	55
111	Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics, 2009, 10, 75.	1.2	70
112	An atypicalPMR2âÂ \in Â f locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strainSaccharomyces cerevisiaeÃ \notin Â f CEN.PK113-7D. FEMS Yeast Research, 2009, 9, 789-792.	1.1	35
113	Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metabolic Engineering, 2009, 11, 125-137.	3.6	49
114	Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genetics and Biology, 2009, 46, 418-426.	0.9	70
115	Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metabolic Engineering, 2008, 10, 141-153.	3.6	174
116	The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on <i>Saccharomyces cerevisiae</i> Metabolism. Applied and Environmental Microbiology, 2008, 74, 2259-2266.	1.4	1,125
117	Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 2008, 26, 1161-1168.	9.4	427
118	Chemostat-Based Micro-Array Analysis in Baker's Yeast. Advances in Microbial Physiology, 2008, 54, 257-417.	1.0	50
119	Engineering and Analysis of a <i>Saccharomyces cerevisiae</i> Strain That Uses Formaldehyde as an Auxiliary Substrate. Applied and Environmental Microbiology, 2008, 74, 3182-3188.	1.4	14
120	The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on <i>Saccharomyces cerevisiae</i> Metabolism. Applied and Environmental Microbiology, 2008, 74, 3920-3920.	1.4	71
121	Control of the Glycolytic Flux in Saccharomyces cerevisiae Grown at Low Temperature. Journal of Biological Chemistry, 2007, 282, 10243-10251.	1.6	59
122	Physiological and Transcriptional Responses of <i>Saccharomyces cerevisiae</i> to Zinc Limitation in Chemostat Cultures. Applied and Environmental Microbiology, 2007, 73, 7680-7692.	1.4	53
123	Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae. Microbiology (United Kingdom), 2007, 153, 877-886.	0.7	25
124	The fluxes through glycolytic enzymes in <i>Saccharomyces cerevisiae</i> are predominantly regulated at posttranscriptional levels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15753-15758.	3.3	223
125	Acclimation of (i) Saccharomyces cerevisiae (li) to Low Temperature: A Chemostat-based Transcriptome Analysis. Molecular Biology of the Cell, 2007, 18, 5100-5112.	0.9	106
126	Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Research, 2007, 7, 604-620.	1.1	78

#	Article	IF	CITATIONS
127	Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics, 2007, 8, 25.	1.2	42
128	Physiological and morphological effects of genetic alterations leading to a reduced synthesis of UDP-glucose in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2006, 153, 89-96.	0.7	46
129	A new physiological role for Pdr12p inSaccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Research, 2006, 6, 937-945.	1.1	64
130	Contribution of the transcriptional regulator Leu3p to physiology and gene expression in nitrogenand carbon-limited chemostat cultures. FEMS Yeast Research, 2005, 5, 885-897.	1.1	45
131	Physiological Characterization of the ARO10 -Dependent, Broad-Substrate-Specificity 2-Oxo Acid Decarboxylase Activity of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71, 3276-3284.	1.4	117
132	Two-dimensional Transcriptome Analysis in Chemostat Cultures. Journal of Biological Chemistry, 2005, 280, 437-447.	1.6	137
133	Role of Transcriptional Regulation in Controlling Fluxes in Central Carbon Metabolism of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 9125-9138.	1.6	264
134	Comparative genotyping of the laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Research, 2003, 4, 259-269.	1.1	50
135	Genetic and Biochemical Characterization of the UGP1 Gene Encoding the UDP-Glucose Pyrophosphorylase from Saccharomyces cerevisiae. FEBS Journal, 1995, 233, 520-530.	0.2	115