
Majid Moosavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682450/publications.pdf Version: 2024-02-01

ΜΑΠΟ ΜΟΟΖΑΛΛΙ

#	Article	IF	CITATIONS
1	Heterogeneity in microstructures and dynamics of dicationic ionic liquids with symmetric and asymmetric cations. Journal of Molecular Liquids, 2021, 330, 115632.	2.3	5
2	Molecular dynamics simulation of extractive desulfurization of diesel oil model using magnetic ionic liquids. Fluid Phase Equilibria, 2021, 548, 113189.	1.4	5
3	A computational study of the ion gels formed by biodegradable aliphatic CBNAILs and BN nanostructures. Journal of Molecular Liquids, 2020, 298, 112037.	2.3	1
4	Extension of transferable coarse-grained models to dicationic ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 24431-24445.	1.3	4
5	Probing the Effect of Side Alkyl Chain Length on the Structural and Dynamical Micro-heterogeneities in Dicationic Ionic Liquids. Journal of Physical Chemistry B, 2020, 124, 11446-11462.	1.2	5
6	A molecular dynamics study on magnetic imidazolium-based ionic liquids: the effect of an external magnetic field. Physical Chemistry Chemical Physics, 2020, 22, 13070-13083.	1.3	12
7	A comparative study in the prediction of thermal conductivity enhancement of nanofluids using ANN-MLP, ANN-RBF, ANFIS, and GMDH methods. Journal of the Iranian Chemical Society, 2019, 16, 2629-2637.	1.2	6
8	Structure and Dynamics in Amino Acid Choline-Based Ionic Liquids: A Combined QTAIM, NCI, DFT, and Molecular Dynamics Study. Journal of Physical Chemistry B, 2019, 123, 4070-4084.	1.2	30
9	Density, surface tension and glass transition temperature of series of mono-, di-, and tri-cationic imidazolium-based ionic liquids-A predictive approach. Fluid Phase Equilibria, 2018, 460, 135-145.	1.4	7
10	Probing the tricationic ionic liquid/vacuum interface: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 14251-14263.	1.3	10
11	Molecular dynamics simulation of geminal dicationic ionic liquids [C _n (mim) ₂][NTf ₂] ₂ – structural and dynamical properties. Physical Chemistry Chemical Physics, 2018, 20, 435-448.	1.3	34
12	Linear tricationic ionic liquids: Insights into the structural features using DFT and molecular dynamics simulation. Journal of Molecular Liquids, 2018, 271, 96-104.	2.3	17
13	A combined molecular dynamics simulation and quantum mechanics study on the physisorption of biodegradable CBNAILs on <i>h</i> -BN nanosheets. Journal of Chemical Physics, 2018, 149, 074704.	1.2	11
14	Tricationic Ionic Liquids: Structural and Dynamical Properties via Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2017, 121, 1877-1892.	1.2	30
15	The effects of temperature and alkyl chain length on the density and surface tension of the imidazolium-based geminal dicationic ionic liquids. Journal of Chemical Thermodynamics, 2017, 107, 1-7.	1.0	35
16	Nanoscopic Study on Aliphatic Choline-Based Naphthenic Acid Ionic Liquids: Structural and Dynamical Properties. Journal of Physical Chemistry B, 2017, 121, 7946-7962.	1.2	7
17	Synergistic effects and specific molecular interactions in the binary mixtures of [bmim][BF 4] and poly (ethylene glycol)s. Journal of Molecular Liquids, 2017, 225, 810-821.	2.3	13
18	A Study of the Transport Properties of [Bmim]BF4 and PEG Mixtures Using Diffusion-Ordered NMR and UV–Visible Spectroscopy Techniques. Industrial & Engineering Chemistry Research, 2016, 55, 6517-6529.	1.8	4

MAJID MOOSAVI

#	Article	IF	CITATIONS
19	Transport Properties of Short Alkyl Chain Length Dicationic Ionic Liquids—The Effects of Alkyl Chain Length and Temperature. Industrial & Engineering Chemistry Research, 2016, 55, 9087-9099.	1.8	37
20	Application of the extended LJ potential-based equation of state to predict the density of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs, and PFAAs). Physics and Chemistry of Liquids, 2016, 54, 487-498.	0.4	1
21	Rheological properties of {[bmim]PF6+methanol} mixtures at different temperatures, shear rates and compositions. Journal of Molecular Liquids, 2015, 209, 693-705.	2.3	17
22	Prediction of thermodynamic properties of some polymeric systems using an extended LJ potential-based equation of state up to high temperature–high pressure conditions. Physics and Chemistry of Liquids, 2015, 53, 360-375.	0.4	1
23	Subcritical and supercritical thermodynamic properties calculations for quantum light molecules using an extended LJ potential-based equation of state. Physics and Chemistry of Liquids, 2014, 52, 291-304.	0.4	3
24	Investigation of the rheological properties of two imidazolium-based ionic liquids. Journal of Molecular Liquids, 2014, 190, 59-67.	2.3	29
25	Liquid density prediction of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs and) Tj ETQq1 Refrigeration, 2014, 48, 188-200.	1 0.7843 1.8	14 rgBT /Ove 18
26	Shear rate-, temperature- and composition-dependencies of viscosity behavior of mixtures of {[bmim]NO3+ethanol}. Journal of Molecular Liquids, 2014, 199, 257-266.	2.3	11
27	Density prediction of liquid alkali metals and their mixtures using an artificial neural network method over the whole liquid range. Fluid Phase Equilibria, 2014, 361, 135-142.	1.4	19
28	Density prediction of long chain ethers and glycol ethers using a group contribution equation. Journal of Molecular Liquids, 2013, 184, 17-23.	2.3	3
29	Prediction of the specific volume of polymeric systems using the artificial neural network-group contribution method. Fluid Phase Equilibria, 2013, 356, 176-184.	1.4	17
30	Prediction of hydrocarbon densities using an artificial neural network–group contribution method up to high temperatures and pressures. Thermochimica Acta, 2013, 556, 89-96.	1.2	26
31	A new regularity and an equation of state for alkali metals over the whole liquid range. Fluid Phase Equilibria, 2012, 329, 63-70.	1.4	7
32	A new equation of state for molten alkali metal alloys. Journal of Molecular Liquids, 2012, 174, 117-123.	2.3	6
33	Prediction of thermodynamic properties of long chain 1-carboxylic acids and esters using a group contribution equation. Fluid Phase Equilibria, 2012, 316, 122-131.	1.4	6
34	High temperature-high pressure density prediction of hydrocarbon systems using an extended LJ potential-based equation of state. Journal of Supercritical Fluids, 2012, 68, 71-80.	1.6	6
35	Application of the modified linear isotherm regularity equation of state to long chain amines and esters. Thermochimica Acta, 2011, 526, 35-45.	1.2	0
36	Extension of GCM-GMA equation to long chain primary, secondary and tertiary alcohols, primary and secondary amines, and ketones using group contribution method. Fluid Phase Equilibria, 2011, 310, 63-73.	1.4	5

MAJID MOOSAVI

#	Article	IF	CITATIONS
37	Preparation, structural characterization, semiconductor and photoluminescent properties of zinc oxide nanoparticles in a phosphonium-based ionic liquid. Materials Science in Semiconductor Processing, 2011, 14, 69-72.	1.9	22
38	ZnO nanofluids: Green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics, 2010, 121, 198-201.	2.0	318
39	Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. International Journal of Heat and Fluid Flow, 2010, 31, 599-605.	1.1	148
40	Extension of GMA Equation of State to Long-Chain Alkanes Using Group Contribution Method. Industrial & Engineering Chemistry Research, 2010, 49, 6662-6669.	1.8	10
41	Prediction of Thermodynamic Properties of Liquid Air. International Journal of Thermophysics, 2008, 29, 656-663.	1.0	Ο
42	Molecular dynamic simulations of some thermodynamic properties of mixtures of argon with neon, krypton, and xenon using two-body and three-body interaction potentials. Fluid Phase Equilibria, 2008, 274, 51-58.	1.4	11
43	Calculation of thermodynamic properties of lubricant+refrigerant mixtures using GMA equation of state. International Journal of Thermal Sciences, 2007, 46, 944-952.	2.6	13
44	Density calculation using GMA equation of state considering mixing and combining rules for some liquid mixtures. Fluid Phase Equilibria, 2006, 245, 109-116.	1.4	9
45	Application of a new equation of state to liquid refrigerant mixtures. Thermochimica Acta, 2006, 447, 64-68.	1.2	15
46	Extension of a New Equation of State to the Liquid Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 6973-6980.	1.8	18