Martyn A Mclachlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682354/publications.pdf

Version: 2024-02-01

150 papers

4,981 citations

39 h-index 64 g-index

158 all docs

158 docs citations

158 times ranked

7463 citing authors

#	Article	IF	CITATIONS
1	Overcoming Nanoscale Inhomogeneities in Thin-Film Perovskites via Exceptional Post-annealing Grain Growth for Enhanced Photodetection. Nano Letters, 2022, 22, 979-988.	4.5	9
2	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	11.1	71
3	Synergetic interfacial passivation, band alignment, and long-term stability with halide-optimized CsPbBr _{<i>x</i>} 16:00 cspbBr _{36°'<i>x</i>} 16:00 nanocrystals for high-efficiency MAPbl ₃ 16:00 solar cells. Journal of Materials Chemistry C, 2022, 10, 5134-5140.	2.7	2
4	Scanning the optoelectronic properties of Cs ₄ Cu _{ci>x} Ag _{2â^'2<i>x</i>} Sb ₂ Cl ₁₂ double perovskite nanocrystals: the role of Cu ²⁺ content. Journal of Materials Chemistry C, 2022, 10, 5526-5533.	2.7	8
5	Thiophene Derivatives as Ligands for Highly Luminescent and Stable Manganese-Doped CsPbCl3 Nanocrystals. Frontiers in Chemistry, 2022, 10, 849801.	1.8	2
6	Regulation of alternative splicing of PaFT and PaFDL1, the FT and FD homologs in Platanus acerifolia. Gene, 2022, 830, 146506.	1.0	2
7	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100890.	2.8	9
8	Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmampâ \in 2) ₂] (dmampâ \in 2 = 2-dimethylamino-2-methyl-1-propanolate). RSC Advances, 2021, 11, 22199-22205.	. 1.7	5
9	Novel scalable aerosol-assisted CVD route for perovskite solar cells. Materials Advances, 2021, 2, 1606-1612.	2.6	10
10	miR156/157 Targets <i>SPLs</i> to Regulate Flowering Transition, Plant Architecture and Flower Organ Size in Petunia. Plant and Cell Physiology, 2021, 62, 839-857.	1.5	23
11	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.	10.2	21
12	Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38499-38507.	4.0	4
13	A Class II TCP Transcription Factor PaTCP4 from <i>Platanus acerifolia</i> Regulates Trichome Formation in <i>Arabidopsis</i> DNA and Cell Biology, 2021, 40, 1235-1250.	0.9	1
14	Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. Plant Science, 2021, 310, 110971.	1.7	6
15	Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43505-43515.	4.0	17
16	Fluorescence Enhancement through Confined Oligomerization in Nanochannels: An Anthryl Oligomer in a Metal-Organic Framework., 2021, 3, 1599-1604.		4
17	Optimal Interfacial Band Bending Achieved by Fine Energy Level Tuning in Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3970-3981.	8.8	18
18	Color-Stable and High-Efficiency Blue Perovskite Nanocrystal Light-Emitting Diodes via Monovalent Copper Ion Lowering Lead Defects. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55380-55390.	4.0	10

#	Article	IF	CITATIONS
19	Layer number-dependent optoelectronic characteristics of quasi-2D PBA ₂ (MAPbBr ₃) _{<i>n</i>)a^1} PbBr ₄ perovskite films. Journal of Materials Chemistry C, 2021, 9, 17033-17041.	2.7	5
20	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. Journal of the American Chemical Society, 2021, 143, 21549-21559.	6.6	44
21	Room Temperature Synthesis of Phosphineâ€Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents. Particle and Particle Systems Characterization, 2020, 37, 1900391.	1.2	27
22	Origin of Openâ€Circuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020, 30, 1906763.	7.8	47
23	Quantum Confinement and Thicknessâ€Dependent Electron Transport in Solutionâ€Processed In ₂ O ₃ Transistors. Advanced Electronic Materials, 2020, 6, 2000682.	2.6	16
24	Identification and characterization of PaGL1-like genes from Platanus acerifolia related to the regulation of trichomes. Plant Molecular Biology, 2020, 104, 235-248.	2.0	2
25	Hydrothermal growth of facet-tunable fluoride perovskite crystals KMF3 (M = Mg, Mn, Co, Ni and Zn). CrystEngComm, 2020, 22, 6216-6227.	1.3	8
26	Enhancing the light-emitting performance and stability in CsPbBr ₃ perovskite quantum dots <i>via</i> simultaneous doping and surface passivation. Journal of Materials Chemistry C, 2020, 8, 14439-14445.	2.7	32
27	Genome-Wide Identification, Characterization and Expression Analysis of TCP Transcription Factors in Petunia. International Journal of Molecular Sciences, 2020, 21, 6594.	1.8	11
28	Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination <i>versus</i> extraction. Journal of Materials Chemistry C, 2020, 8, 12648-12655.	2.7	70
29	Strain Rate Effect on the Ductile Brittle Transition in Grinding Hot Pressed SiC Ceramics. Micromachines, 2020, 11, 545.	1.4	14
30	Shape Controllable Synthesis of Bi-Based Perovskite Superconductor Microcrystals via a Mild Hydrothermal Method. Crystal Growth and Design, 2020, 20, 2123-2128.	1.4	8
31	Methanol-induced fast CsBr release results in phase-pure CsPbBr ₃ perovskite nanoplatelets. Nanoscale Advances, 2020, 2, 1973-1979.	2.2	16
32	Building on soft hybrid perovskites: highly oriented metal oxides as electron transport and moisture resistant layers. Applied Nanoscience (Switzerland), 2020, 10, 1871-1878.	1.6	3
33	Effect of processing temperature on film properties of ZnO prepared by the aqueous method and related organic photovoltaics and LEDs. Inorganic Chemistry Frontiers, 2020, 7, 2809-2817.	3.0	2
34	Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 13594-13599.	5.2	51
35	Low Temperature Scalable Deposition of Copper(I) Thiocyanate Films via Aerosol-Assisted Chemical Vapor Deposition. Crystal Growth and Design, 2020, 20, 5380-5386.	1.4	3
36	Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses. Advanced Functional Materials, 2020, 30, 2001482.	7.8	43

#	Article	IF	CITATIONS
37	Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation. Journal of Materials Chemistry A, 2020, 8, 8684-8691.	5.2	34
38	A study on stability of active layer of polymer solar cells: effect of UV–visible light with different conditions. Polymer Bulletin, 2019, 76, 525-537.	1.7	1
39	p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. Journal of Materials Chemistry A, 2019, 7, 18971-18979.	5.2	55
40	Influence of Lithium and Lanthanum Treatment on TiO 2 Nanofibers and Their Application in nâ€iâ€p Solar Cells. ChemElectroChem, 2019, 6, 3529-3529.	1.7	0
41	PaMYB82 from Platanus acerifolia regulates trichome development in transgenic Arabidopsis. Plant Science, 2019, 287, 110177.	1.7	5
42	Greater negative lymph node count predicts favorable survival of patients with breast cancer in the setting of neoadjuvant chemotherapy and mastectomy. Future Oncology, 2019, 15, 3701-3709.	1.1	3
43	Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO ₃ /Ag/MoO ₃ electrodes. Materials Chemistry Frontiers, 2019, 3, 450-455.	3.2	40
44	Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. Journal of Materials Chemistry A, 2019, 7, 3006-3011.	5.2	70
45	Introducing a Nonvolatile Nâ€√ype Dopant Drastically Improves Electron Transport in Polymer and Smallâ€Molecule Organic Transistors. Advanced Functional Materials, 2019, 29, 1902784.	7.8	35
46	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	10.2	54
47	High Responsivity and Response Speed Singleâ€Layer Mixedâ€Cation Lead Mixedâ€Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Largeâ€Area Rigid and Flexible Substrates. Advanced Functional Materials, 2019, 29, 1901371.	7.8	39
48	Origin of Performance Enhancement in TiO ₂ â€Carbon Nanotube Composite Perovskite Solar Cells. Small Methods, 2019, 3, 1900164.	4.6	45
49	Water Dynamics in the Hydration Shell of Amphiphilic Macromolecules. Journal of Physical Chemistry B, 2019, 123, 2971-2977.	1.2	10
50	Influence of Lithium and Lanthanum Treatment on TiO 2 Nanofibers and Their Application in nâ€iâ€p Solar Cells. ChemElectroChem, 2019, 6, 3590-3598.	1.7	5
51	Origin of Open-Circuit Voltage Losses in Perovskite Solar Cells Investigated by Surface Photovoltage Measurement. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46808-46817.	4.0	66
52	Genome-wide identification and characterization of the ALOG gene family in Petunia. BMC Plant Biology, 2019, 19, 600.	1.6	8
53	Unusual Thermal Boundary Resistance in Halide Perovskites: A Way To Tune Ultralow Thermal Conductivity for Thermoelectrics. ACS Applied Materials & Interfaces, 2019, 11, 47507-47515.	4.0	24
54	Outstanding Indoor Performance of Perovskite Photovoltaic Cells – Effect of Device Architectures and Interlayers. Solar Rrl, 2019, 3, 1800207.	3.1	63

#	Article	IF	Citations
55	Single-repeat R3 MYB transcription factors from Platanus acerifolia negatively regulate trichome formation in Arabidopsis. Planta, 2019, 249, 861-877.	1.6	10
56	Isolation and functional characterization of the promoter of SEPALLATA3 gene in London plane and its application in genetic engineering of sterility. Plant Cell, Tissue and Organ Culture, 2019, 136, 109-121.	1.2	2
57	Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. Catalysis Today, 2019, 321-322, 59-66.	2.2	28
58	Exploring in vivo metabolism and excretion of QO-58L using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. European Journal of Pharmaceutical Sciences, 2018, 117, 379-391.	1.9	1
59	Copper (I) Selenocyanate (CuSeCN) as a Novel Holeâ€Transport Layer for Transistors, Organic Solar Cells, and Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1707319.	7.8	19
60	Highâ€Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCNâ€Nanowire Heterointerface. Advanced Science, 2018, 5, 1700980.	5.6	19
61	ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Science Bulletin, 2018, 63, 343-348.	4.3	33
62	Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces. Advanced Optical Materials, 2018, 6, 1701203.	3.6	18
63	Mineralizer effect on facet-controllable hydrothermal crystallization of perovskite structure YbFeO ₃ crystals. CrystEngComm, 2018, 20, 470-476.	1.3	19
64	Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genomics, 2018, 19, 193.	1.2	64
65	Hydrothermally grown ZnO electrodes for improved organic photovoltaic devices. Thin Solid Films, 2018, 645, 417-423.	0.8	21
66	Environmentally friendly, aqueous processed ZnO as an efficient electron transport layer for low temperature processed metal–halide perovskite photovoltaics. Inorganic Chemistry Frontiers, 2018, 5, 84-89.	3.0	12
67	Electric Single-Molecule Hybridization Detector for Short DNA Fragments. Analytical Chemistry, 2018, 90, 14063-14071.	3.2	15
68	Probing and Controlling Intragrain Crystallinity for Improved Low Temperature–Processed Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1803943.	7.8	18
69	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	10.2	59
70	Elucidating the Origins of Subgap Tail States and Openâ€Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1801808.	7.8	78
71	Large-area plastic nanogap electronics enabled by adhesion lithography. Npj Flexible Electronics, 2018, 2, .	5.1	29
72	Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nature Communications, 2018, 9, 3237.	5.8	48

#	Article	IF	CITATIONS
73	Red-Shifted Emission in Y ₃ MgSiAl ₃ O ₁₂ :Ce ³⁺ Garnet Phosphor for Blue Light-Pumped White Light-Emitting Diodes. Journal of Physical Chemistry C, 2018, 122, 15659-15665.	1.5	93
74	Passivation against oxygen and light induced degradation by the PCBM electron transport layerÂin planar perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1686-1692.	2.5	27
75	Formation, location and beneficial role of Pbl ₂ in lead halide perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 119-126.	2.5	99
76	Functional analysis of the promoters of B-class MADS-box genes in London plane tree and their application in genetic engineering of sterility. Plant Cell, Tissue and Organ Culture, 2017, 130, 279-288.	1.2	3
77	Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography. IEEE Transactions on Electron Devices, 2017, 64, 1973-1980.	1.6	20
78	Nanoscale Structure–Property Relationships in Low-Temperature Solution-Processed Electron Transport Layers for Organic Photovoltaics. Crystal Growth and Design, 2017, 17, 6559-6564.	1.4	6
79	Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thinâ€Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1701818.	7.8	208
80	A rapid and efficient in vitro shoot regeneration protocol using cotyledons of London plane tree (Platanus acerifolia Willd.). Plant Growth Regulation, 2017, 83, 245-252.	1.8	3
81	Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Planta, 2017, 245, 439-457.	1.6	21
82	Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink. Ceramics International, 2017, 43, 9846-9853.	2.3	12
83	Energy Quantization in Solutionâ€Processed Layers of Indium Oxide and Their Application in Resonant Tunneling Diodes. Advanced Functional Materials, 2016, 26, 1656-1663.	7.8	21
84	Chargeâ€Carrier Density Independent Mobility in Amorphous Fluoreneâ€Triarylamine Copolymers. Advanced Functional Materials, 2016, 26, 3720-3729.	7.8	21
85	Metal Oxide Heterointerfaces in Hybrid Electronic Platforms. Advanced Materials, 2016, 28, 3801-3801.	11.1	1
86	Alâ€Đoped ZnO Transistors Processed from Solution at 120 °C. Advanced Electronic Materials, 2016, 2, 1600070.	2.6	42
87	An Airâ€Stable Semiconducting Polymer Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]arsole. Angewa Chemie - International Edition, 2016, 55, 7148-7151.	indte 7.2	56
88	Radio Frequency Coplanar ZnO Schottky Nanodiodes Processed from Solution on Plastic Substrates. Small, 2016, 12, 1993-2000.	5.2	48
89	Probing the doping mechanisms and electrical properties of Al, Ga and In doped ZnO prepared by spray pyrolysis. Journal of Materials Chemistry C, 2016, 4, 5953-5961.	2.7	14
90	Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells. Nano Energy, 2016, 28, 277-287.	8.2	27

#	Article	IF	CITATIONS
91	Multistate Resistive Switching Memory for Synaptic Memory Applications. Advanced Materials Interfaces, 2016, 3, 1600192.	1.9	19
92	Lowâ€Temperature Solutionâ€Processed Electron Transport Layers for Inverted Polymer Solar Cells. Advanced Electronic Materials, 2016, 2, 1600008.	2.6	11
93	Four SQUAMOSA PROMOTER BINDING PROTEIN-LIKE homologs from a basal eudicot tree (Platanus) Tj ETQq1 1 0. Trees - Structure and Function, 2016, 30, 1417-1428.	.784314 rg 0.9	gBT /Overlo
94	Surface Structure Modification of ZnO and the Impact on Electronic Properties. Advanced Materials, 2016, 28, 3893-3921.	11.1	157
95	An Airâ€Stable Semiconducting Polymer Containing Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]arsole. Angewa Chemie, 2016, 128, 7264-7267.	ndte 1.6	15
96	Exploring and controlling intrinsic defect formation in SnO ₂ thin films. Journal of Materials Chemistry C, 2016, 4, 758-765.	2.7	35
97	Derivatization and diffusive motion of molecular fullerenes: $\langle i \rangle$ Ab initio $\langle i \rangle$ and atomistic simulations. Journal of Applied Physics, 2015, 118, .	1.1	2
98	ZnO Nanorod Arrays as Electron Injection Layers for Efficient Organic Light Emitting Diodes. Advanced Functional Materials, 2015, 25, 4657-4663.	7.8	25
99	Signatures of Quantized Energy States in Solutionâ€Processed Ultrathin Layers of Metalâ€Oxide Semiconductors and Their Devices. Advanced Functional Materials, 2015, 25, 1727-1736.	7.8	36
100	Defect-band mediated ferromagnetism in Gd-doped ZnO thin films. Journal of Applied Physics, 2015, 117, .	1.1	43
101	Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solutionâ€Processed Alâ€Doped ZnO Electron Transporting Layer. Advanced Energy Materials, 2015, 5, 1500204.	10.2	142
102	Fluorene copolymer bilayers for emission colour tuning in inverted hybrid light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 4945-4953.	2.7	13
103	Aerosol assisted chemical vapour deposition of transparent conductive ZnO thin films with hexagonal microplate surfaces and ultrahigh haze values. Journal of Materials Chemistry A, 2015, 3, 22311-22315.	5.2	10
104	Indium Oxide Thin-Film Transistors Processed at Low Temperature via Ultrasonic Spray Pyrolysis. ACS Applied Materials & Dray Pyrolysis. ACS Applied Materials & Dray Pyrolysis. ACS	4.0	79
105	Highâ€Efficiency, Solutionâ€Processed, Multilayer Phosphorescent Organic Lightâ€Emitting Diodes with a Copper Thiocyanate Holeâ€Injection/Holeâ€Transport Layer. Advanced Materials, 2015, 27, 93-100.	11.1	178
106	Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography. Nature Communications, 2014, 5, 3933.	5.8	77
107	Transparent conducting oxide top contacts for organic electronics. Journal of Materials Chemistry C, 2014, 2, 84-89.	2.7	15
108	Electroforming-free resistive switching memory effect in transparent $\langle i \rangle p \langle i \rangle$ -type tin monoxide. Applied Physics Letters, 2014, 104, .	1.5	30

#	Article	IF	Citations
109	Polythiophenes with vinylene linked <i>ortho</i> , <i>meta</i> and <i>para</i> -carborane sidechains. Polymer Chemistry, 2014, 5, 6190-6199.	1.9	23
110	Deposition of low sheet resistance indium tin oxide directly onto functional small molecules. Thin Solid Films, 2014, 570, 129-133.	0.8	6
111	Hydrothermal growth of ZnO nanorods: The role of KCl in controlling rod morphology. Thin Solid Films, 2013, 539, 18-22.	0.8	29
112	Templated Non-Oxide Sol-Gel Preparation of Well-Ordered Macroporous (inverse opal) Ta ₃ N ₅ Films. Inorganic Chemistry, 2013, 52, 9994-9999.	1.9	10
113	$\langle i \rangle p \langle i \rangle$ -channel thin-film transistors based on spray-coated Cu2O films. Applied Physics Letters, 2013, 102, .	1.5	101
114	Interfacial molecular order of conjugated polymer in P3HT:ZnO bilayer photovoltaics and its impact on device performance. Applied Physics Letters, 2013, 103, 153304.	1.5	12
115	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	11.8	274
116	Highâ€Performance ZnO Transistors Processed Via an Aqueous Carbonâ€Free Metal Oxide Precursor Route at Temperatures Between 80–180 °C. Advanced Materials, 2013, 25, 4340-4346.	11.1	156
117	Isolation and Functional Analyses of a Putative Floral Homeotic C-Function Gene in a Basal Eudicot London Plane Tree (Platanus acerifolia). PLoS ONE, 2013, 8, e63389.	1.1	7
118	Comparative Optoelectronic Study between Copolymers of Peripherally Alkylated Dithienosilole and Dithienogermole. Macromolecules, 2012, 45, 735-742.	2.2	42
119	Building on Soft Foundations: New Possibilities for Controlling Hybrid Photovoltaic Architectures. Advanced Energy Materials, 2012, 2, 528-531.	10.2	16
120	Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air. Applied Physics Letters, 2011, 98, 123503.	1.5	122
121	Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation. Journal of Materials Chemistry, 2011, 21, 12949.	6.7	70
122	Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. Journal of Materials Chemistry, 2011, 21, 8178.	6.7	84
123	Solution processed hybrid photovoltaics: preparation ofÂaÂstandard ZnO template. Journal of Photonics for Energy, 2011, 1, 011117.	0.8	7
124	Electrodeposition of ZnO Nanostructures on Molecular Thin Films. Chemistry of Materials, 2011, 23, 3863-3870.	3.2	51
125	Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. Journal of Materials Chemistry, 2011, 21, 2381-2386.	6.7	90
126	Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia. Gene, 2011, 473, 82-91.	1.0	15

#	Article	IF	Citations
127	Electrochemical deposition of ordered macroporous ZnO on transparent conducting electrodes. Materials Chemistry and Physics, 2011, 129, 343-348.	2.0	13
128	Genetic diversity and genetic structure of different populations of the endangered species Davidia involucrata in China detected by inter-simple sequence repeat analysis. Trees - Structure and Function, 2011, 25, 1063-1071.	0.9	12
129	Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT. Advanced Functional Materials, 2011, 21, 941-947.	7.8	23
130	Ferroelectric Materials: Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT (Adv. Funct. Mater. 5/2011). Advanced Functional Materials, 2011, 21, 802-802.	7.8	1
131	Highâ€Mobility Lowâ€Voltage ZnO and Liâ€Doped ZnO Transistors Based on ZrO ₂ Highâ€ <i>k</i> Dielectric Grown by Spray Pyrolysis in Ambient Air. Advanced Materials, 2011, 23, 1894-1898.	11.1	217
132	Formation of Patterned Arrays of Polystyrene Colloidal Crystal Structures on Flexible Functional Substrates. Langmuir, 2009, 25, 11344-11350.	1.6	7
133	Controlling the electrodeposition of mesoporous metals for nanoplasmonics. Nanoscale, 2009, $1,355$.	2.8	6
134	Preparation of large area three-dimensionally ordered macroporous thin films by confined infiltration and crystallisation. Journal of Crystal Growth, 2008, 310, 2644-2648.	0.7	4
135	Extraction of high-quality tissue-specific RNA from London plane trees (Platanus acerifolia), permitting the construction of a female inflorescence cDNA library. Functional Plant Biology, 2008, 35, 159.	1.1	27
136	Electrochemically Grown Metallic Inverse Opals. ECS Transactions, 2008, 13, 1-6.	0.3	0
137	Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument. Journal of Physics: Conference Series, 2008, 126, 012028.	0.3	14
138	Colloidal crystals as nanostructured templates for organic solar cells. , 2008, , .		1
139	Engineered Nanocomposites for Solid Oxide Fuel Cells By Colloidal Crystal Templating. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	O
140	FERROELECTRIC THREE-DIMENSIONALLY ORDERED MACROPOROUS THIN FILMS. Integrated Ferroelectrics, 2007, 92, 43-52.	0.3	1
141	Template directed synthesis of nanostructured phthalocyanine thin films. Journal of Materials Chemistry, 2007, 17, 3773.	6.7	15
142	Optical properties of tetragonal photonic crystal synthesized via template-assisted self-assembly. Journal of Applied Physics, 2006, 99, 116109.	1.1	18
143	Domain size and thickness control of thin film photonic crystals. Journal of Materials Chemistry, 2005, 15, 369.	6.7	18
144	Template-Assisted Growth of Nominally Cubic (100)-Oriented Three-Dimensional Crack-Free Photonic Crystals. Nano Letters, 2005, 5, 2646-2650.	4.5	79

#	ARTICLE	IF	CITATIONS
145	Thin film photonic crystals: synthesis and characterisation. Journal of Materials Chemistry, 2004, 14, 144.	6.7	105
146	Application of pressure to shift the bandgap in polystyrene-based photonic crystals. , 2004, , .		2
147	Perovskite Materials for Resistive Random Access Memories. , 0, , .		2
148	Asymmetric Charge Carrier Transfer and Transport in Planar Lead Halide Perovskite Solar Cells., 0,,.		0
149	Investigating Triarylamine Polymer Derivatives as Hole Transport Layers in FACsPbI3 Perovskite Solar Cells. , 0, , .		0
150	Inverted organic photovoltaics with a solution-processed Mg-doped ZnO electron transport layer annealed at 150 ŰC. Sustainable Energy and Fuels, 0, , .	2.5	1