Doron Rapaport

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682337/publications.pdf

Version: 2024-02-01

57758 79698 5,892 101 44 73 citations h-index g-index papers 110 110 110 4562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolutionary conservation of biogenesis of Î ² -barrel membrane proteins. Nature, 2003, 426, 862-866.	27.8	388
2	Fzo1p Is a Mitochondrial Outer Membrane Protein Essential for the Biogenesis of Functional Mitochondria in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 20150-20155.	3.4	321
3	Finding the right organelle. EMBO Reports, 2003, 4, 948-952.	4.5	182
4	Biogenesis of Porin of the Outer Mitochondrial Membrane Involves an Import Pathway via Receptors and the General Import Pore of the Tom Complex. Journal of Cell Biology, 2001, 152, 289-300.	5.2	151
5	Tom20 Mediates Localization of mRNAs to Mitochondria in a Translation-Dependent Manner. Molecular and Cellular Biology, 2010, 30, 284-294.	2.3	150
6	Biogenesis of \hat{l}^2 -barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cellular and Molecular Life Sciences, 2009, 66, 2789-2804.	5.4	149
7	Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. Journal of Cell Science, 2008, 121, 1990-1998.	2.0	147
8	Biogenesis of Tom40, Core Component of the Tom Complex of Mitochondria. Journal of Cell Biology, 1999, 146, 321-332.	5.2	139
9	Connection of the Mitochondrial Outer and Inner Membranes by Fzo1 Is Critical for Organellar Fusion. Journal of Cell Biology, 2001, 152, 683-692.	5.2	136
10	Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nature Methods, 2018, 15, 617-622.	19.0	134
11	Vps13-Mcp1 interact at vacuole–mitochondria interfaces and bypass ER–mitochondria contact sites. Journal of Cell Biology, 2017, 216, 3219-3229.	5.2	132
12	Biogenesis of \hat{l}^2 -barrel membrane proteins of mitochondria. Trends in Biochemical Sciences, 2005, 30, 575-582.	7.5	129
13	Mitochondrial Protein Import. Journal of Biological Chemistry, 1997, 272, 18725-18731.	3.4	119
14	Tob38, a novel essential component in the biogenesis of βâ€barrel proteins of mitochondria. EMBO Reports, 2004, 5, 704-709.	4.5	119
15	Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Molecular Biology of the Cell, 2012, 23, 3927-3935.	2.1	119
16	How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane?. Journal of Cell Biology, 2005, 171, 419-423.	5.2	105
17	Signals in bacterial \hat{l}^2 -barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2531-2536.	7.1	105
18	Biogenesis of mitochondrial outer membrane proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 42-51.	4.1	100

#	Article	IF	CITATIONS
19	Absence of BiP Co-chaperone DNAJC3 Causes Diabetes Mellitus and Multisystemic Neurodegeneration. American Journal of Human Genetics, 2014, 95, 689-697.	6.2	100
20	Multiple pathways in the integration of proteins into the mitochondrial outer membrane. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 971-980.	2.6	97
21	Mim1 Functions in an Oligomeric Form to Facilitate the Integration of Tom20 into the Mitochondrial Outer Membrane. Journal of Molecular Biology, 2008, 376, 671-680.	4.2	91
22	Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. Journal of Cell Science, 2013, 126, 3563-74.	2.0	90
23	Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space. Cell, 2018, 175, 1365-1379.e25.	28.9	87
24	Multispan mitochondrial outer membrane protein Ugo1 follows a unique Mim1-dependent import pathway. Journal of Cell Biology, 2011, 194, 397-405.	5.2	81
25	Characterization of the targeting signal in mitochondrial \hat{l}^2 -barrel proteins. Nature Communications, 2016, 7, 12036.	12.8	80
26	Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends in Biochemical Sciences, 2020, 45, 650-667.	7. 5	79
27	The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial \hat{l}^2 -barrel proteins. Journal of Cell Biology, 2007, 176, 77-88.	5.2	75
28	Signal-anchored Proteins Follow a Unique Insertion Pathway into the Outer Membrane of Mitochondria. Journal of Biological Chemistry, 2005, 280, 48-53.	3.4	74
29	Proteome analysis of mitochondrial outer membrane fromNeurospora crassa. Proteomics, 2006, 6, 72-80.	2.2	74
30	Dynamics of the TOM Complex of Mitochondria during Binding and Translocation of Preproteins. Molecular and Cellular Biology, 1998, 18, 5256-5262.	2.3	73
31	The Mitochondrial TOM Complex Is Required for tBid/Bax-induced Cytochrome c Release. Journal of Biological Chemistry, 2007, 282, 27633-27639.	3.4	73
32	Mim1, a protein required for the assembly of the TOM complex of mitochondria. EMBO Reports, 2005, 6, 57-62.	4.5	72
33	Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial \hat{l}^2 -barrel proteins. Journal of Cell Biology, 2018, 217, 3091-3108.	5.2	72
34	Assembly of the TOB Complex of Mitochondria. Journal of Biological Chemistry, 2005, 280, 6434-6440.	3.4	70
35	A crucial role of Mim2 in the biogenesis of mitochondrial outer membrane proteins. Journal of Cell Science, 2012, 125, 3464-73.	2.0	69
36	The Role of Djp1 in Import of the Mitochondrial Protein Mim1 Demonstrates Specificity between a Cochaperone and Its Substrate Protein. Molecular and Cellular Biology, 2013, 33, 4083-4094.	2.3	68

#	Article	IF	Citations
37	Signal-Anchor Domains of Proteins of the Outer Membrane of Mitochondria. Journal of Biological Chemistry, 2003, 278, 42064-42071.	3.4	67
38	Reconstituted TOM Core Complex and Tim9/Tim10 Complex of Mitochondria Are Sufficient for Translocation of the ADP/ATP Carrier across Membranes. Molecular Biology of the Cell, 2004, 15, 1445-1458.	2.1	65
39	Biogenesis of the mitochondrial TOM complex. Trends in Biochemical Sciences, 2002, 27, 191-197.	7.5	64
40	The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis and morphology. FEBS Journal, 2016, 283, 3338-3352.	4.7	60
41	Roles of the Mdm10, Tom7, Mdm12, and Mmm1 Proteins in the Assembly of Mitochondrial Outer Membrane Proteins in Neurospora crassa. Molecular Biology of the Cell, 2010, 21, 1725-1736.	2.1	57
42	Assembly of Tom6 and Tom7 into the TOM Core Complex of Neurospora crassa. Journal of Biological Chemistry, 2001, 276, 17679-17685.	3.4	56
43	Mutations in <i>RHOT1</i> Disrupt Endoplasmic Reticulum–Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson's Disease. Antioxidants and Redox Signaling, 2019, 31, 1213-1234.	5.4	56
44	Tom70 Is Essential for PINK1 Import into Mitochondria. PLoS ONE, 2013, 8, e58435.	2.5	49
45	The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Reports, 2021, 35, 108936.	6.4	47
46	cis and trans Sites of the TOM Complex of Mitochondria in Unfolding and Initial Translocation of Preproteins. Journal of Biological Chemistry, 1998, 273, 8806-8813.	3.4	45
47	Structural Requirements of Tom40 for Assembly into Preexisting TOM Complexes of Mitochondria. Molecular Biology of the Cell, 2001, 12, 1189-1198.	2.1	43
48	Mitochondrial contact sites as platforms for phospholipid exchange. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 69-80.	2.4	43
49	Pex19 is involved in importing dually targeted tailâ€anchored proteins to both mitochondria and peroxisomes. Traffic, 2018, 19, 770-785.	2.7	43
50	Genetic and Functional Interactions between the Mitochondrial Outer Membrane Proteins Tom6 and Sam37. Molecular and Cellular Biology, 2009, 29, 5975-5988.	2.3	41
51	The Mitochondrial Porin, VDAC, Has Retained the Ability to Be Assembled in the Bacterial Outer Membrane. Molecular Biology and Evolution, 2010, 27, 887-895.	8.9	41
52	Biogenesis of beta-barrel proteins in evolutionary context. International Journal of Medical Microbiology, 2015, 305, 259-264.	3.6	41
53	An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function. Cell Reports, 2016, 15, 540-549.	6.4	41
54	The outer membrane form of the mitochondrial protein Mcr1 follows a TOMâ€independent membrane insertion pathway. FEBS Letters, 2008, 582, 855-860.	2.8	38

#	Article	IF	Citations
55	Multiple functions of tail-anchor domains of mitochondrial outer membrane proteins. FEBS Letters, 2003, 555, 511-515.	2.8	36
56	The Endoplasmic Reticulum-Mitochondria Encounter Structure Complex Coordinates Coenzyme Q Biosynthesis. Contact (Thousand Oaks (Ventura County, Calif)), 2019, 2, 251525641882540.	1.3	35
57	The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. Journal of Cell Science, 2018, 131, .	2.0	34
58	A novel heterozygous i>OPA3 i> mutation located in the mitochondrial target sequence results in altered steady-state levels and fragmented mitochondrial network. Journal of Medical Genetics, 2013, 50, 848-858.	3.2	33
59	Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biology, 2019, 17, e3000098.	5.6	33
60	The Biogenesis of Mitochondrial Outer Membrane Proteins Show Variable Dependence on Import Factors. IScience, 2020, 23, 100779.	4.1	32
61	Evolutionary Conservation in Biogenesis of \hat{l}^2 -Barrel Proteins Allows Mitochondria to Assemble a Functional Bacterial Trimeric Autotransporter Protein. Journal of Biological Chemistry, 2014, 289, 29457-29470.	3.4	31
62	Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMPâ€dependent biogenesis pathway. EMBO Reports, 2016, 17, 965-981.	4.5	31
63	Biogenesis pathways of α-helical mitochondrial outer membrane proteins. Biological Chemistry, 2020, 401, 677-686.	2.5	31
64	Chloroplast \hat{l}^2 -Barrel Proteins Are Assembled into the Mitochondrial Outer Membrane in a Process That Depends on the TOM and TOB Complexes. Journal of Biological Chemistry, 2012, 287, 27467-27479.	3.4	30
65	Genome-Wide Screens in <i>Saccharomyces cerevisiae</i> Highlight a Role for Cardiolipin in Biogenesis of Mitochondrial Outer Membrane Multispan Proteins. Molecular and Cellular Biology, 2015, 35, 3200-3211.	2.3	30
66	Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes. ELife, $2018, 7, \ldots$	6.0	30
67	Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels. Journal of Cell Biology, 2021, 220, .	5.2	29
68	Mitochondria can recognize and assemble fragments of a \hat{l}^2 -barrel structure. Molecular Biology of the Cell, 2011, 22, 1638-1647.	2.1	28
69	Membrane integration of a mitochondrial signal-anchored protein does not require additional proteinaceous factors. Biochemical Journal, 2012, 442, 381-389.	3.7	23
70	Mitochondrion-Enriched Anionic Phospholipids Facilitate Flock House Virus RNA Polymerase Membrane Association. Journal of Virology, 2009, 83, 4498-4507.	3.4	22
71	Alterations in expression levels of deafness dystonia protein 1 affect mitochondrial morphology. Human Molecular Genetics, 2012, 21, 287-299.	2.9	22
72	Structural basis of client specificity in mitochondrial membrane-protein chaperones. Science Advances, 2020, 6, .	10.3	21

#	Article	IF	CITATIONS
73	Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. IScience, 2020, 23, 101797.	4.1	20
74	Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2. Human Molecular Genetics, 2016, 25, 459-471.	2.9	19
75	Alternative Splicing Gives Rise to Different Isoforms of the <i>Neurospora crassa</i> Tob55 Protein That Vary in Their Ability to Insert β-Barrel Proteins Into the Outer Mitochondrial Membrane. Genetics, 2007, 177, 137-149.	2.9	18
76	Uncovering targeting priority to yeast peroxisomes using an in-cell competition assay. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21432-21440.	7.1	17
77	Unresolved mysteries in the biogenesis of mitochondrial membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1085-1090.	2.6	16
78	The enigmatic role of Mim1 in mitochondrial biogenesis. European Journal of Cell Biology, 2010, 89, 212-215.	3.6	15
79	Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. International Review of Cell and Molecular Biology, 2008, 268, 147-190.	3.2	13
80	Coi1 is a novel assembly factor of the yeast complex III–complex IV supercomplex. Molecular Biology of the Cell, 2017, 28, 2609-2622.	2.1	13
81	Yeast phospholipid biosynthesis is linked to mRNA localization. Journal of Cell Science, 2014, 127, 3373-81.	2.0	11
82	The Biogenesis Process of VDAC – From Early Cytosolic Events to Its Final Membrane Integration. Frontiers in Physiology, 2021, 12, 732742.	2.8	11
83	Early stages in the biogenesis of eukaryotic βâ€barrel proteins. FEBS Letters, 2017, 591, 2671-2681.	2.8	10
84	The role of the individual TOM subunits in the association of PINK1 with depolarized mitochondria. Journal of Molecular Medicine, 2022, 100, 747-762.	3.9	10
85	Mitochondrial-bacterial hybrids of BamA/Tob55 suggest variable requirements for the membrane integration of Î ² -barrel proteins. Scientific Reports, 2016, 6, 39053.	3.3	7
86	The Mitochondrial Protein OM45 Is Exposed to the Cytosol. Journal of Biological Chemistry, 2012, 287, 27415.	3.4	5
87	The mitochondrial intermembrane space–facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Molecular Biology of the Cell, 2019, 30, 2681-2694.	2.1	5
88	The multi-factor modulated biogenesis of the mitochondrial multi-span protein Om14. Journal of Cell Biology, 2022, 221, .	5.2	5
89	The mitochondrial gate reveals its secrets. Nature Structural and Molecular Biology, 2019, 26, 1083-1085.	8.2	4
90	Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. Journal of Molecular Medicine, 2019, 97, 269-279.	3.9	4

#	Article	IF	CITATIONS
91	Assembly and targeting of secretins in the bacterial outer membrane. International Journal of Medical Microbiology, 2019, 309, 151322.	3.6	1
92	Yeast can express and assemble bacterial secretins in the mitochondrial outer membrane. Microbial Cell, 2020, 7, 15-27.	3.2	1
93	Special section on "Protein translocation across or insertion into membranes― Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 840.	2.6	0
94	Hydrogenosomal tail-anchored proteins are targeted to both mitochondria and ER upon their expression in yeast cells. PLoS ONE, 2020, 15, e0237982.	2.5	0
95	Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial \hat{l}^2 -Barrel Proteins. Methods in Molecular Biology, 2015, 1329, 17-31.	0.9	0
96	Title is missing!. , 2020, 15, e0237982.		0
97	Title is missing!. , 2020, 15, e0237982.		0
98	Title is missing!. , 2020, 15, e0237982.		0
99	Title is missing!. , 2020, 15, e0237982.		0
100	Title is missing!. , 2020, 15, e0237982.		0
101	Title is missing!. , 2020, 15, e0237982.		O