
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8682017/publications.pdf Version: 2024-02-01

Μινορίι Τερλνο

#	Article	IF	CITATIONS
1	Coadsorption model for first-principle description of roles of donors in heterogeneous Ziegler–Natta propylene polymerization. Journal of Catalysis, 2012, 293, 39-50.	6.2	102
2	Stereospecific Nature of Active Sites on TiCl4/MgCl2 Ziegler–Natta Catalyst in the Presence of an Internal Electron Donor. Macromolecular Chemistry and Physics, 2003, 204, 395-402.	2.2	91
3	Synthesis of a biodegradable polymeric supramolecular assembly for drug delivery. Macromolecular Rapid Communications, 1995, 16, 259-263.	3.9	81
4	Thermally switchable polyrotaxane as a model of stimuli-responsive supramolecules for nano-scale devices. Macromolecular Rapid Communications, 1996, 17, 509-515.	3.9	71
5	Coadsorption and Supportâ€Mediated Interaction of Ti Species with Ethyl Benzoate in MgCl ₂ â€Supported Heterogeneous Zieglerâ€Natta Catalysts Studied by Density Functional Calculations. Macromolecular Rapid Communications, 2007, 28, 1918-1922.	3.9	66
6	Variation in the Isospecific Active Sites of Internal Donor-Free MgCl2-Supported Ziegler Catalysts: Effect of External Electron Donors. Macromolecular Rapid Communications, 2001, 22, 326-328.	3.9	62
7	Specific Roles of Al-Alkyl Cocatalyst in the Origin of Isospecificity of Active Sites on Donor-Free TiCl4/MgCl2 Ziegler-Natta Catalyst. Macromolecular Chemistry and Physics, 2002, 203, 2412-2421.	2.2	62
8	Multilateral characterization for industrial Ziegler–Natta catalysts toward elucidation of structure–performance relationship. Journal of Catalysis, 2014, 311, 33-40.	6.2	61
9	Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering. Journal of Catalysis, 2020, 385, 76-86.	6.2	51
10	A study on the states of ethyl benzoate and TiCl4 in MgCl2-supported high-yield catalysts. Die Makromolekulare Chemie, 1987, 188, 1477-1487.	1.1	49
11	Reductive Formation of Isospecific Ti Dinuclear Species on a MgCl ₂ (110) Surface in Heterogeneous Zieglerâ€Natta Catalysts. Macromolecular Rapid Communications, 2008, 29, 1472-1476.	3.9	49
12	Propylene Polymerization Performance of Isolated and Aggregated Ti Species Studied Using a Wellâ€Đesigned TiCl ₃ /MgCl ₂ Zieglerâ€Natta Model Catalyst. Macromolecular Rapid Communications, 2009, 30, 887-891.	3.9	48
13	Machine Learning-Aided Structure Determination for TiCl ₄ –Capped MgCl ₂ Nanoplate of Heterogeneous Ziegler–Natta Catalyst. ACS Catalysis, 2019, 9, 2599-2609.	11.2	46
14	Precise arguments on the distribution of stereospecific active sites on MgCl2-supported ziegler-natta catalysts. Macromolecular Symposia, 2004, 213, 7-18.	0.7	43
15	Kinetic and morphological study of a magnesium ethoxideâ€based Ziegler–Natta catalyst for propylene polymerization. Polymer International, 2009, 58, 40-45.	3.1	41
16	Study of the chain transfer reaction by hydrogen in the initial stage of propene polymerization. Macromolecular Rapid Communications, 1995, 16, 651-657.	3.9	40
17	Effects of Electron Donors on Active Sites Distribution of MgCl2-Supported Ziegler-Natta Catalysts Investigated by Multiple Active Sites Model. Macromolecular Chemistry and Physics, 2005, 206, 961-966.	2.2	39
18	Effect of chemical structure of silane coupling agent on interface adhesion properties of syndiotactic polypropylene/cellulose composite. Journal of Applied Polymer Science, 2011, 119, 1732-1741.	2.6	38

#	Article	IF	CITATIONS
19	The Use of Donors to Increase the Isotacticity of Polypropylene. Advances in Polymer Science, 2013, , 81-97.	0.8	37
20	The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1511-1519.	3.6	36
21	Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 691-708.	3.5	35
22	Stopped-flow study of the interaction of MgCl2-supported Ziegler catalyst with (Me)nSi(OEt)4-n: a tool for understanding the active sites precursors and the correlation to stereospecificity. Macromolecular Chemistry and Physics, 1998, 199, 613-618.	2.2	34
23	Ethylene and 1-hexene copolymerization with CO-prereduced phillips CrOx/SiO2 catalyst in the presence of Al-alkyl cocatalyst. Journal of Polymer Science Part A, 2005, 43, 4632-4641.	2.3	33
24	Homogeneously Dispersed Poly(propylene)/SiO2 Nanocomposites with Unprecedented Transparency. Macromolecular Rapid Communications, 2006, 27, 910-913.	3.9	33
25	Kinetic study of isospecific active sites formed by various alkylaluminiums on MgCl2-supported Ziegler catalyst at the initial stage of propene polymerization. Macromolecular Chemistry and Physics, 1997, 198, 1249-1255.	2.2	32
26	Initial Particle Morphology Development in Zieglerâ€Natta Propylene Polymerization Tracked with Stoppedâ€Flow Technique. Macromolecular Chemistry and Physics, 2011, 212, 723-729.	2.2	31
27	Kinetic evaluation of various isospecific active sites on MgCl2-supported Ziegler catalysts. Macromolecular Symposia, 2003, 193, 71-80.	0.7	29
28	Active Site Transformation During the Induction Period of Ethylene Polymerization over the Phillips CrO _{<i>x</i>} /SiO ₂ Catalyst. ChemCatChem, 2012, 4, 872-881.	3.7	29
29	Doublestimuli-responsive degradable hydrogels for drug delivery: Interpenetrating polymer networks composed of oligopeptide-terminated poly(ethylene glycol) and dextran. Macromolecular Rapid Communications, 1995, 16, 663-666.	3.9	28
30	Well-Defined Polypropylene/Polypropylene-Grafted Silica Nanocomposites: Roles of Number and Molecular Weight of Grafted Chains on Mechanistic Reinforcement. Polymers, 2016, 8, 300.	4.5	28
31	Thermal stability of syndiotactic polypropene. Macromolecular Rapid Communications, 1997, 18, 157-161.	3.9	26
32	Dependence of tacticity distribution in thermal oxidative degradation of polypropylene. Polymer Bulletin, 2005, 54, 311-319.	3.3	26
33	Alternation of Pore Architecture of Ziegler–Natta Catalysts through Modification of Magnesium Ethoxide. Macromolecular Reaction Engineering, 2015, 9, 325-332.	1.5	26
34	Surface physico-chemical state of CO-prereduced Phillips CrOx/SiO2 catalyst and unique polymerization behavior in the presence of Al-alkyl cocatalyst. Macromolecular Symposia, 2004, 213, 37-46.	0.7	25
35	Revisiting the identity of δ-MgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. Journal of Catalysis, 2020, 387, 1-11.	6.2	25
36	Blood compatibility of polypropylene surfaces in relation to the crystalline-amorphous microstructure. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 859-877.	3.5	23

#	Article	IF	CITATIONS
37	Influences of polypropylene grafted to SiO2 nanoparticles on the crystallization behavior and mechanical properties of polypropylene/SiO2 nanocomposites. Polymer Bulletin, 2012, 68, 1093-1108.	3.3	23
38	Understanding the Chemical and Physical Transformations of a Ziegler–Natta Catalyst at the Initial Stage of Polymerization Kinetics: The Key Role of Alkylaluminum in the Catalyst Activation Process. Macromolecular Chemistry and Physics, 2014, 215, 1698-1706.	2.2	23
39	High-Throughput Synthesis of Support Materials for Olefin Polymerization Catalyst. ACS Combinatorial Science, 2017, 19, 331-342.	3.8	23
40	Structure-performance relationship of Mg(OEt)2-based Ziegler-Natta catalysts. Journal of Catalysis, 2020, 389, 525-532.	6.2	23
41	Formation of Highly Active Ziegler–Natta Catalysts Clarified by a Multifaceted Characterization Approach. ACS Catalysis, 2021, 11, 13782-13796.	11.2	23
42	Investigation of a fine-grain MgCl2-supported Ziegler catalyst by stopped-flow propene polymerization: Model for the formation of active sites induced by catalyst fragmentation during polymerization. Macromolecular Chemistry and Physics, 1997, 198, 3207-3214.	2.2	22
43	Similarities and Differences of the Active Sites in Basic and Advanced MgCl ₂ â€Supported Zieglerâ€Natta Propylene Polymerization Catalysts. Macromolecular Reaction Engineering, 2010, 4, 510-515.	1.5	22
44	H2-D2 exchange reaction with MgCl2-supported Ziegler catalyst by stopped-flow method. Macromolecular Chemistry and Physics, 1996, 197, 895-900.	2.2	21
45	Effects of Hydrogen for Different Stereospecific Active Sites on Ultra Low TiCl3 Loading Supported Catalyst. Macromolecular Reaction Engineering, 2007, 1, 160-164.	1.5	21
46	Copolymerization of ethylene and cyclopentene with the Phillips CrO _{<i>x</i>} /SiO ₂ catalyst in the presence of an aluminum alkyl cocatalyst. Journal of Applied Polymer Science, 2009, 111, 1869-1877.	2.6	21
47	Deviation of hydrogen response during propylene polymerization with various Ziegler–Natta catalysts. Journal of Molecular Catalysis A, 1999, 145, 211-220.	4.8	20
48	Active sites deterioration of MgCl2-supported catalyst induced by the electron donor extraction by alkylaluminium. Polymer International, 2002, 51, 781-784.	3.1	20
49	MgO/MgCl2/TiCl4 Core–Shell Catalyst for Establishing Structure–Performance Relationship in Ziegler–Natta Olefin Polymerization. Topics in Catalysis, 2014, 57, 911-917.	2.8	20
50	New Reactor Granule Technology for Highly Filled Nanocomposites: Effective Flame Retardation of Polypropylene/Magnesium Hydroxide Nanocomposites. Macromolecular Materials and Engineering, 2015, 300, 679-683.	3.6	20
51	Density Functional Calculations for Electronic and Steric Effects of Ethyl Benzoate on Various Ti Species in MgCl ₂ â€&upported Zieglerâ€Natta Catalysts. Macromolecular Symposia, 2007, 260, 98-106.	0.7	19
52	A Density Functional Study on the Influence of the Molecular Flexibility of Donors on the Insertion Barrier and Stereoselectivity of Zieglerâ€Natta Propylene Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 2188-2193.	2.2	19
53	Role of dispersion state of ti species in deactivation of MgCl2-supported Ziegler-Natta catalysts. Macromolecular Research, 2010, 18, 839-844.	2.4	19
54	Effects of Ti oxidation state on ethylene, 1-hexene comonomer polymerization by MgCl2-supported Ziegler–Natta catalysts. Polymer Bulletin, 2011, 67, 1979-1989.	3.3	19

#	Article	IF	CITATIONS
55	Kinetic elucidation of comonomerâ€induced chemical and physical activation in heterogeneous zieglerâ€natta propylene polymerization. Journal of Polymer Science Part A, 2011, 49, 4005-4012.	2.3	19
56	Structure–performance relationship in Ziegler–Natta olefin polymerization with novel core–shell MgO/MgCl2/TiCl4 catalysts. Catalysis Communications, 2012, 27, 13-16.	3.3	19
57	Truxillic and truxinic acid-based, bio-derived diesters as potent internal donor in Ziegler-Natta catalyst for propylene polymerization. Applied Catalysis A: General, 2018, 554, 80-87.	4.3	18
58	Synthesis of polypropene-block-poly(ethylene-co-propene) by short-period polymerization with MgCl2-supported Ziegler catalyst. Macromolecular Rapid Communications, 1995, 16, 247-252.	3.9	17
59	Effect of stereoregularity on the thermo-oxidative degradation of poly(propylene)s estimated by chemiluminescence. Macromolecular Rapid Communications, 1997, 18, 667-671.	3.9	17
60	Ethylene/1â€Hexene Copolymerization with A Novel SiO ₂ â€Supported Inorganic and Organic Hybrid Chromiumâ€based Catalyst. Macromolecular Reaction Engineering, 2013, 7, 254-266.	1.5	17
61	Determination of titanium distribution on the catalyst surface of industrial supported Ziegler catalysts by means of scanning Auger electron microscopy. Macromolecular Chemistry and Physics, 1998, 199, 2709-2715.	2.2	16
62	Development of a Largeâ€6cale Stoppedâ€Flow System for Heterogeneous Olefin Polymerization Kinetics. Macromolecular Reaction Engineering, 2012, 6, 275-279.	1.5	16
63	Vanadiumâ€Modified Bimetallic Phillips Catalyst With High Branching Ability for Ethylene Polymerization. Macromolecular Reaction Engineering, 2012, 6, 346-350.	1.5	16
64	Microstructural characterization of polypropene surfaces using grazing incidence X-ray diffraction. Macromolecular Chemistry and Physics, 1998, 199, 261-266.	2.2	15
65	Multiplicity of molecular weight distribution of polyethene produced with modified-polypropene-supported Ziegler catalyst systems. Macromolecular Chemistry and Physics, 1998, 199, 393-399.	2.2	15
66	Improvement of the photostability of isotactic polypropylene by the incorporation of ethylene. Journal of Applied Polymer Science, 2002, 86, 1863-1867.	2.6	15
67	Cellulose/polypropylene composites: Influence of the molecular weight and concentration of oxidatively degraded and maleated polypropylene compatibilizers on tensile behavior. Journal of Applied Polymer Science, 2009, 111, 1835-1841.	2.6	15
68	Precise Active Site Analysis for TiCl3/MgCl2 Ziegler-Natta Model Catalyst Based on Fractionation and Statistical Methods. Catalysts, 2013, 3, 137-147.	3.5	15
69	Insight into structural distribution of heterogeneous Ziegler–Natta catalyst from non-empirical structure determination. Journal of Catalysis, 2021, 394, 299-306.	6.2	15
70	Experimental and Computational Approaches on the Isospecific Role of Monoesterâ€Type Internal Electron Donor for TiCl ₄ /MgCl ₂ Zieglerâ€Natta Catalysts. Macromolecular Symposia, 2007, 260, 42-48.	0.7	14
71	Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Science and Technology of Advanced Materials, 2008, 9, 024402.	6.1	14
72	High resolution transmission electron microscope observation of industrial high performance Ziegler catalysts. Macromolecular Chemistry and Physics, 2000, 201, 2789-2798.	2.2	13

#	Article	IF	CITATIONS
73	Hydrogen Effects for Propylene Polymerization with Ultra Low TiCl ₃ Loading MgCl ₂ â€&upported Catalyst. Macromolecular Symposia, 2007, 260, 179-183.	0.7	13
74	Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group. Science and Technology of Advanced Materials, 2008, 9, 024401.	6.1	13
75	Comprehensive Investigation of Catalyst Structure and Polymerization Conditions for Chain Branching in Ethylene Polymerization with Phillipsâ€7ype Catalysts. Macromolecular Reaction Engineering, 2011, 5, 332-339.	1.5	13
76	Structure–Performance Relationship for Dialkyldimethoxysilane as an External Donor in Stoppedâ€Flow Propylene Polymerization Using a Ziegler–Natta Catalyst. Macromolecular Chemistry and Physics, 2014, 215, 1721-1727.	2.2	13
77	Ethene polymerization with modified-polypropene-supported highly stable Ziegler catalyst. Macromolecular Rapid Communications, 1996, 17, 25-29.	3.9	12
78	Mechanistic aspects of blood-contacting properties of polypropylene surfaces -from the viewpoint of macromolecular entanglement and hydrophobic interaction via water molecules. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 543-559.	3.5	12
79	Kinetic investigation of propene polymerization with stopped-flow method. Macromolecular Symposia, 2001, 165, 3-10.	0.7	12
80	Effects of bulk morphology on the mechanical properties of meltâ€blended PP/PS blends. Journal of Applied Polymer Science, 2008, 109, 211-217.	2.6	12
81	Thermal and Photooxidative Degradation Behaviors of Poly(propylene)/SiO ₂ Nanocomposites with Various Polymer Morphologies. Macromolecular Reaction Engineering, 2008, 2, 135-141.	1.5	12
82	Cellulose/syndiotactic polypropylene composites: Effects of maleated polypropylene as a compatibilizer and silanized cellulose on the morphology and tensile properties. Journal of Applied Polymer Science, 2009, 113, 2022-2029.	2.6	12
83	Model Catalysts for Clarification of Active Siteâ€Polymer Relationship in Heterogeneous Olefin Polymerization. Macromolecular Symposia, 2012, 313-314, 1-7.	0.7	12
84	Syndiotactic polypropylene/microfibrous cellulose composites: Effect of filler size on tensile properties. Journal of Applied Polymer Science, 2013, 128, 915-922.	2.6	12
85	Development of Large-Scale Stopped-Flow Technique and its Application in Elucidation of Initial Ziegler–Natta Olefin Polymerization Kinetics. Polymers, 2019, 11, 1012.	4.5	12
86	Basic characterization of polypropene-block-poly(methylene-1,3-cyclopentane-co-propene) synthesized from propene and 1,5-hexadiene with modified stopped-flow method. Polymer International, 2001, 50, 568-571.	3.1	11
87	Direct Observation of Poly(propylene)-block-Poly(ethylene-co-propylene) Molecules by Atomic Force Microscopy. Macromolecular Chemistry and Physics, 2004, 205, 179-186.	2.2	11
88	Effect of stereoregularity of polypropylene on flow instability in capillary extrusion. Advances in Polymer Technology, 2009, 28, 185-191.	1.7	11
89	New Quenching Procedure for Preservation of Initial Polymer/Catalyst Particle Morphology in Ziegler–Natta Olefin Polymerization. Macromolecular Reaction Engineering, 2009, 3, 467-472.	1.5	11
90	Development of a Heteroâ€ <scp>B</scp> imetallic Phillipsâ€ <scp>T</scp> ype Catalyst for Ethylene Polymerization. Macromolecular Reaction Engineering, 2013, 7, 668-673.	1.5	11

#	Article	IF	CITATIONS
91	The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2014, 117, 1397-1405.	3.6	11
92	Characterization of the differences in the crystallinity from surface to bulk of compression-molded polypropene sheets using attenuated total reflection fourier-transform IR spectroscopy. Macromolecular Chemistry and Physics, 1996, 197, 3523-3530.	2.2	10
93	Local thermal degradation behavior of heterophasic polypropylene copolymers. Journal of Applied Polymer Science, 2006, 100, 1831-1835.	2.6	10
94	Kinetic and Morphological Investigation on the Magnesium Ethoxideâ€Based Zieglerâ€Natta Catalyst for Propylene Polymerization Using Typical External Donors. Macromolecular Symposia, 2009, 285, 52-57.	0.7	10
95	External Donor Induced Direct Contact Effects on Mg(OC ₂ H ₅) ₂ â€Based Zieglerâ€Natta Catalysts for Propylene Polymerization. Macromolecular Symposia, 2009, 285, 115-120.	0.7	10
96	Effects of molecular dispersion state of surface Ti species on ethylene-propylene copolymerization with TiCl3-based Ziegler-Natta model catalyst. Macromolecular Research, 2010, 18, 834-838.	2.4	10
97	Interface adhesion properties of syndiotactic polypropylene/cellulose group composite: Relationship between chemical structure of coupling agent and reactivity for cellulose group. Journal of Applied Polymer Science, 2011, 122, 2798-2806.	2.6	10
98	PdCl2-induced chain transfer reaction by hydrogen at the initial stage of propene polymerization with MgCl2-supported Ziegler catalyst. Macromolecular Chemistry and Physics, 1997, 198, 2499-2504.	2.2	9
99	Graft polycondensation of microfibrillated jute cellulose with oligo(<scp>L</scp> â€lactic acid) and its properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
100	High-precision Molecular Modelling for Ziegler-Natta Catalysts. Journal of the Japan Petroleum Institute, 2018, 61, 182-190.	0.6	9
101	Solution-state NMR study of organic components of industrial Ziegler-Natta catalysts: Effect of by-products on catalyst performance. Applied Catalysis A: General, 2021, 611, 117971.	4.3	9
102	Polyolefin-supported homogeneous titanium based Ziegler catalyst for the production of polyethene with narrow molecular weight distribution. Macromolecular Chemistry and Physics, 1998, 199, 1765-1770.	2.2	8
103	Characterization and properties of polypropylene-block-poly(ethylene-co-propylene) synthesized by short-period polymerization. Journal of Applied Polymer Science, 1999, 74, 958-964.	2.6	8
104	Plausible guard effect on the active sites of heterogeneous Ziegler–Natta catalyst by coordinating monomers and growing polymer chains in the initial stage of propene polymerization. Polymer International, 2004, 53, 723-727.	3.1	8
105	Preparation of modified polybuteneâ€1 by oxidation and limonene radical grafting using an Nd ₂ O ₃ â€assisted radical initiator system and its characterization. Polymer International, 2010, 59, 1673-1682.	3.1	8
106	New Quenching Method for Improving Largeâ€Scale Stoppedâ€Flow Technique. Macromolecular Reaction Engineering, 2014, 8, 766-770.	1.5	8
107	Synthesis of aryloxide-containing half-titanocene catalysts grafted to soluble polynorbornene chains and their application in ethylene polymerization: Integration of multiple active centres in a random coil. Journal of Catalysis, 2018, 357, 69-79.	6.2	8
108	Title is missing!. Angewandte Makromolekulare Chemie, 1996, 243, 87-98.	0.2	7

#	Article	IF	CITATIONS
109	Effects of Various Preparation and Polymerization Procedures on the Isospecific Nature of TiCl3-Based Polypropylene Catalysts. Polymer Bulletin, 2005, 54, 225-236.	3.3	7
110	Preparation and Characterization of Cellulose/Polypropylene Composite Using an Oxidatively Degraded Polypropylene. Journal of Polymers and the Environment, 2008, 16, 267-275.	5.0	7
111	Novel modification of polybutâ€1â€ene using autoâ€oxidation controlled by addition of limonene monomer. Polymer International, 2010, 59, 463-471.	3.1	7
112	The influence of functional groups on the ethylene polymerization performance of silsesquioxane-supported Phillips-type catalysts. Dalton Transactions, 2017, 46, 12158-12166.	3.3	7
113	Stepwise polymerization of propylene and ethylene with Cr(acetylacetonate)3/MgCl2-ethylbenzoate/diethylaluminium chloride catalyst system. Polymer International, 2003, 52, 29-34.	3.1	6
114	Influence of primary structure on thermal oxidative degradation of polypropylene impact copolymer. Polymer Bulletin, 2005, 55, 141-147.	3.3	6
115	High temperature polymerization of propylene catalyzed by MgCl2-supported Ziegler–Natta catalyst with various cocatalysts. Journal of Applied Polymer Science, 2006, 100, 1978-1982.	2.6	6
116	CRYSTAF Analysis of Polyethylene Synthesized with Phillips Catalyst. Macromolecular Symposia, 2009, 285, 74-80.	0.7	6
117	Kinetic investigation of the active sites precursors on MgCl2-supported Ziegler catalyst through interaction with a Lewis base. Macromolecular Chemistry and Physics, 1998, 199, 55-59.	2.2	5
118	New Approaches for the Development of Highly Stable Polypropylene. Macromolecular Symposia, 2004, 214, 299-306.	0.7	5
119	Critical Role of Spherulite Structure on Behavior of Stabilizers in Poly(propylene) Stabilization. Macromolecular Symposia, 2012, 312, 146-156.	0.7	5
120	Effects of crystal phase transformation on tensile properties of polybuteneâ€1/cellulose composites. Journal of Applied Polymer Science, 2012, 123, 41-49.	2.6	5
121	Origin of Chemical Composition of Ethylene/Propylene Copolymer Produced with Ziegler–Natta Catalyst. Macromolecular Reaction Engineering, 2017, 11, 1600038.	1.5	5
122	Computational Insights into the Multisite Nature of the Phillips CrO <i>_x</i> /SiO ₂ Catalyst for Ethylene Polymerization: The Perspective of Chromasiloxane Ring Size and F Modification. ACS Catalysis, 2022, 12, 3589-3603.	11.2	5
123	Influence of electron donors on the initial stage of cyclopolymerization of 1,5-hexadiene with MgCl2-supported Ziegler catalysts analyzed by temperature rising elution fractionation. Journal of Applied Polymer Science, 2002, 83, 2976-2983.	2.6	4
124	Plausible Mechanism for the Formation and Transformation of Active Sites on Novel Phillips Type Catalyst with New Organo-siloxane Ligand. Studies in Surface Science and Catalysis, 2006, 161, 225-228.	1.5	4
125	Additive effects of tripalmitin on morphologies and tensile properties of polybutene-1 and its composite with micro fibrous cellulose. Polymer Bulletin, 2013, 70, 1383-1395.	3.3	4
126	Effect of Internal Donors on Raman and IR Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT. Materials, 2022, 15, 909.	2.9	4

#	Article	IF	CITATIONS
127	Preparation of polybuteneâ€1/multiwall carbon nanotube composite by oxidation and limonene radical grafting and its characterization. Polymer International, 2011, 60, 1614-1623.	3.1	3
128	Chemical modification of silica support to improve the branching ability of Phillips catalyst. Pure and Applied Chemistry, 2012, 85, 533-541.	1.9	3
129	A Comparison of the Influence of Temperature During Slurry and Gas Phase Propylene Polymerization on Zieglerâ€Natta Catalyst. Macromolecular Symposia, 2016, 370, 41-51.	0.7	3
130	Particle engineering of magnesium ethoxide-based Ziegler-Natta catalyst through post-modification of magnesium ethoxide. Applied Catalysis A: General, 2021, 626, 118337.	4.3	3
131	Blood-contacting properties of polypropylene surfaces. Journal of Artificial Organs, 1998, 1, 4-9.	0.9	2
132	Effects of Silica Particles on the Transparency of Polypropylene Based Nanocomposites. Studies in Surface Science and Catalysis, 2006, 161, 237-240.	1.5	2
133	Dualâ€Activeâ€Site Nature of Magnesium Dichlorideâ€Supported Cyclopentadienyl Titanium Chloride Catalysts Switched by an Activator in Propylene Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 1011-1018.	2.2	2
134	Chemisorption-Induced Activation of MgCl ₂ Film as Realistic Route for Heterogeneous Ziegler–Natta Surfaces under Ultrahigh Vacuum. Journal of Physical Chemistry C, 2017, 121, 24085-24092.	3.1	2
135	Tensile and flexural behavior of polypropene sheets with different crystallinities of surface layer. Angewandte Makromolekulare Chemie, 1997, 253, 201-210.	0.2	1
136	Dataset of energetically accessible structures of MgCl2/TiCl4 clusters for Ziegler-Natta catalysts. Data in Brief, 2021, 34, 106654.	1.0	1
137	Morphology and Mechanical Properties of Quenched Polypropylene/SiO ₂ Nanocomposite Films. Seikei-Kakou, 2004, 16, 617-622.	0.0	1
138	Additional Effect of SEBS on Dynamic Mechanical Properties in iPP/aPS Blends. Nihon Reoroji Gakkaishi, 2008, 36, 29-34.	1.0	0