List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681812/publications.pdf Version: 2024-02-01

		20759	22102
302	17,859	60	113
papers	citations	h-index	g-index
323	323	323	17835
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	2.8	124
2	Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022, 24, 4236-4255.	1.8	22
3	Phylogenetic relatedness, functional traits, and spatial scale determine herbivore coâ€occurrence in a subtropical forest. Ecological Monographs, 2022, 92, e01492.	2.4	8
4	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
5	Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability. Science of the Total Environment, 2022, 812, 152560.	3.9	8
6	Disturbance and indirect effects of climate warming support a plant invader in mountains. Oikos, 2022, 2022, .	1.2	3
7	Niche partitioning in nitrogen uptake among subtropical tree species enhances biomass production. Science of the Total Environment, 2022, 823, 153716.	3.9	9
8	Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Clobal Ecology and Biogeography, 2022, 31, 872-885.	2.7	16
9	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	2.7	40
10	Consistency of demographic tradeâ€offs across 13 (sub)tropical forests. Journal of Ecology, 2022, 110, 1485-1496.	1.9	11
11	Temporal trends in the spatial bias of species occurrence records. Ecography, 2022, 2022, .	2.1	18
12	Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. Journal of Ecology, 2022, 110, 2167-2178.	1.9	7
13	Decision-making of citizen scientists when recording species observations. Scientific Reports, 2022, 12, .	1.6	11
14	Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic and Applied Ecology, 2021, 55, 110-123.	1.2	7
15	Contrasting patterns of intraspecific trait variability in native and non-native plant species along an elevational gradient on Tenerife, Canary Islands. Annals of Botany, 2021, 127, 565-576.	1.4	24
16	Climate change aggravates bog species extinctions in the Black Forest (Germany). Diversity and Distributions, 2021, 27, 282-295.	1.9	10
17	Revealing the functional traits linked to hidden environmental factors in community assembly. Journal of Vegetation Science, 2021, 32, e12976.	1.1	10
18	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	1.7	21

#	Article	IF	CITATIONS
19	Drivers of within-tree leaf trait variation in a tropical planted forest varying in tree species richness. Basic and Applied Ecology, 2021, 50, 203-216.	1.2	9
20	Widespread decline in Central European plant diversity across six decades. Global Change Biology, 2021, 27, 1097-1110.	4.2	48
21	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	2.7	90
22	Drivers of understorey biomass: tree species identity is more important than richness in a young forest. Journal of Plant Ecology, 2021, 14, 465-477.	1.2	6
23	The contrasting effects of nitrogen and phosphorus fertilizations on the growth of Cunninghamia lanceolata depend on the season in subtropical China. Forest Ecology and Management, 2021, 482, 118874.	1.4	3
24	LC-MS based plant metabolic profiles of thirteen grassland species grown in diverse neighbourhoods. Scientific Data, 2021, 8, 52.	2.4	10
25	More diverse tree communities promote foliar fungal pathogen diversity, but decrease infestation rates per tree species, in a subtropical biodiversity experiment. Journal of Ecology, 2021, 109, 2068-2080.	1.9	15
26	Local Tree Diversity Suppresses Foliar Fungal Infestation and Decreases Morphological but Not Molecular Richness in a Young Subtropical Forest. Journal of Fungi (Basel, Switzerland), 2021, 7, 173.	1.5	5
27	The relationship between niche breadth and range size of beech (<i>Fagus</i>) species worldwide. Journal of Biogeography, 2021, 48, 1240-1253.	1.4	25
28	Global functional variation in alpine vegetation. Journal of Vegetation Science, 2021, 32, e13000.	1.1	17
29	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	1.1	15
30	Tree species richness modulates water supply in the local tree neighbourhood: evidence from wood <i>δ</i> ¹³ C signatures in a large-scale forest experiment. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203100.	1.2	4
31	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	2.7	59
32	Tree diversity and functional leaf traits drive herbivoreâ€associated microbiomes in subtropical China. Ecology and Evolution, 2021, 11, 6153-6166.	0.8	1
33	Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecology and Evolution, 2021, 11, 5424-5440.	0.8	22
34	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	2.7	8
35	A checklist for using Beals' index with incomplete floristic monitoring data. Diversity and Distributions, 2021, 27, 1328-1333.	1.9	1
36	Above―and belowâ€ground complementarity rather than selection drive tree diversity–productivity relationships in European forests. Functional Ecology, 2021, 35, 1756-1767.	1.7	15

#	Article	IF	CITATIONS
37	What shapes ground beetle assemblages in a tree species-rich subtropical forest?. ZooKeys, 2021, 1044, 907-927.	0.5	3
38	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	2.7	49
39	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	3.4	62
40	Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Diversity and Distributions, 2021, 27, 1353-1366.	1.9	29
41	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	3.5	153
42	What drives leaf litter decomposition and the decomposer community in subtropical forests – The richness of the above-ground tree community or that of the leaf litter?. Soil Biology and Biochemistry, 2021, 160, 108314.	4.2	21
43	Reprint of: Drivers of within-tree leaf trait variation in a tropical planted forest varying in tree species richness. Basic and Applied Ecology, 2021, 55, 6-19.	1.2	3
44	The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology, 2021, 55, 33-52.	1.2	38
45	Biodiversity in European agricultural landscapes: transformative societal changes needed. Trends in Ecology and Evolution, 2021, 36, 1067-1070.	4.2	29
46	Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology, 2021, 55, 74-86.	1.2	13
47	The Bamboo Rhizome Evolution in China Is Driven by Geographical Isolation and Trait Differentiation. Forests, 2021, 12, 1280.	0.9	5
48	Implementing the formal language of the vegetation classification expert systems (ESy) in the statistical computing environment R. Applied Vegetation Science, 2021, 24, e12562.	0.9	9
49	Foliar Fungal Endophytes in a Tree Diversity Experiment Are Driven by the Identity but Not the Diversity of Tree Species. Life, 2021, 11, 1081.	1.1	6
50	Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology and Evolution, 2021, 5, 1594-1603.	3.4	83
51	Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 2021, 7, eabk1643.	4.7	72
52	A tale of scale: Plot but not neighbourhood tree diversity increases leaf litter ant diversity. Journal of Animal Ecology, 2020, 89, 299-308.	1.3	19
53	Moderately common plants show highest relative losses. Conservation Letters, 2020, 13, e12674.	2.8	21
54	Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME Journal, 2020, 14, 463-475.	4.4	141

#	Article	IF	CITATIONS
55	Neighbourhood diversity mitigates drought impacts on tree growth. Journal of Ecology, 2020, 108, 865-875.	1.9	41
56	Global fern and lycophyte richness explained: How regional and local factors shape plot richness. Journal of Biogeography, 2020, 47, 59-71.	1.4	40
57	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
58	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	2.7	21
59	Changes in carbon storages of Fagus forest ecosystems along an elevational gradient on Mt. Fanjingshan in Southwest China. Journal of Plant Ecology, 2020, 13, 139-149.	1.2	3
60	Species richness influences the spatial distribution of trees in European forests. Oikos, 2020, 129, 380-390.	1.2	9
61	Promoting resilience of large international collaborative research programs in times of global crisis. Ecology and Evolution, 2020, 10, 12549-12554.	0.8	2
62	Consequences of multiple imputation of missing standard deviations and sample sizes in metaâ€analysis. Ecology and Evolution, 2020, 10, 11699-11712.	0.8	26
63	Native distribution characteristics rather than functional traits explain preadaptation of invasive species to highâ€UVâ€B environments. Diversity and Distributions, 2020, 26, 1421-1438.	1.9	5
64	EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 2020, 23, 648-675.	0.9	186
65	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	3.6	62
66	Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Functional Ecology, 2020, 34, 2598-2610.	1.7	24
67	Protection gaps and restoration opportunities for primary forests in Europe. Diversity and Distributions, 2020, 26, 1646-1662.	1.9	47
68	Biogeographic differences in plant–soil biota relationships contribute to the exotic range expansion of Verbascum thapsus. Ecology and Evolution, 2020, 10, 13057-13070.	0.8	3
69	Global priorities of environmental issues to combat food insecurity and biodiversity loss. Science of the Total Environment, 2020, 730, 139096.	3.9	39
70	Deriving siteâ€ s pecific species pools from large databases. Ecography, 2020, 43, 1215-1228.	2.1	17
71	Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecology and Evolution, 2020, 10, 6752-6768.	0.8	17
72	Community and neighbourhood tree species richness effects on fungal species in leaf litter. Fungal Ecology, 2020, 47, 100961.	0.7	6

#	Article	IF	CITATIONS
73	Host functional and phylogenetic composition rather than host diversity structure plant–herbivore networks. Molecular Ecology, 2020, 29, 2747-2762.	2.0	24
74	Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature, 2020, 2, 305-316.	1.7	259
75	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	4.7	377
76	Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends. Diversity and Distributions, 2020, 26, 782-794.	1.9	15
77	Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. Journal of Biogeography, 2020, 47, 2210-2222.	1.4	35
78	Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 2020, 10, 10691.	1.6	45
79	Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2020, 2, 380-394.	1.7	139
80	Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nature Ecology and Evolution, 2020, 4, 550-559.	3.4	19
81	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	1.6	16
82	Genetic richness affects trait variation but not community productivity in a tree diversity experiment. New Phytologist, 2020, 227, 744-756.	3.5	12
83	Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 2019, 42, 467-477.	2.1	41
84	Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. Journal of Ecology, 2019, 107, 2697-2712.	1.9	33
85	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	1.4	95
86	The geography of biodiversity change in marine and terrestrial assemblages. Science, 2019, 366, 339-345.	6.0	385
87	How do trees respond to species mixing in experimental compared to observational studies?. Ecology and Evolution, 2019, 9, 11254-11265.	0.8	8
88	Plant species' range type determines local responses to biotic interactions and land use. Ecology, 2019, 100, e02890.	1.5	5
89	Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecology Letters, 2019, 22, 2130-2140.	3.0	80
90	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	1.1	185

#	Article	IF	CITATIONS
91	The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 2019, 30, 777-788.	1.1	17
92	Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biology and Biochemistry, 2019, 135, 429-437.	4.2	25
93	Potential links between woodâ€inhabiting and soil fungal communities: Evidence from highâ€throughput sequencing. MicrobiologyOpen, 2019, 8, e00856.	1.2	18
94	Early positive effects of tree species richness on soil organic carbon accumulation in a large-scale forest biodiversity experiment. Journal of Plant Ecology, 2019, 12, 882-893.	1.2	29
95	Semiâ€polar root exudates in natural grassland communities. Ecology and Evolution, 2019, 9, 5526-5541.	0.8	26
96	The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Scientific Reports, 2019, 9, 8635.	1.6	30
97	Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 2019, 30, 620-632.	1.1	11
98	Janzenâ€Connell effects in a forest BEF experiment: Strong distanceâ€dependent seedling establishment of multiple species. Ecology, 2019, 100, e02736.	1.5	17
99	Insect decline and its drivers: Unsupported conclusions in a poorly performed meta-analysis on trends—A critique of Sánchez-Bayo and Wyckhuys (2019). Basic and Applied Ecology, 2019, 37, 20-23.	1.2	20
100	Species richness change across spatial scales. Oikos, 2019, 128, 1079-1091.	1.2	160
101	Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 2019, 10, 1460.	5.8	139
102	Trait–performance relationships of grassland plant species differ between common garden and field conditions. Ecology and Evolution, 2019, 9, 1691-1701.	0.8	9
103	Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms, 2019, 7, 547.	1.6	10
104	Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE, 2019, 14, e0220881.	1.1	20
105	Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56, 733-744.	1.9	58
106	Response to Comment on "Impacts of species richness on productivity in a large-scale subtropical forest experiment― Science, 2019, 363, .	6.0	3
107	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	3.9	177
108	Tree identity rather than tree diversity drives earthworm communities in European forests. Pedobiologia, 2018, 67, 16-25.	0.5	18

#	Article	IF	CITATIONS
109	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	2.0	113
110	Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 2018, 9, 1144.	5.8	92
111	Mountain roads and nonâ€native species modify elevational patterns of plant diversity. Global Ecology and Biogeography, 2018, 27, 667-678.	2.7	64
112	Leaf Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) biochemical profile of grassland plant species related to land-use intensity. Ecological Indicators, 2018, 84, 803-810.	2.6	26
113	Multiâ€ŧrophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023.	2.1	17
114	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	3.0	74
115	Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecological Research, 2018, 33, 205-212.	0.7	16
116	Clobal trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	3.4	397
117	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
118	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	1.5	62
119	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	6.0	433
120	Linking root exudates to functional plant traits. PLoS ONE, 2018, 13, e0204128.	1.1	57
121	Tree species richness and fungi in freshly fallen leaf litter: Unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biology and Biochemistry, 2018, 127, 120-126.	4.2	33
122	Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Frontiers in Microbiology, 2018, 9, 2312.	1.5	28
123	Using co-occurrence information and trait composition to understand individual plant performance in grassland communities. Scientific Reports, 2018, 8, 9076.	1.6	13
124	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	5.8	169
125	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
126	Current Challenges in Plant Eco-Metabolomics. International Journal of Molecular Sciences, 2018, 19, 1385.	1.8	106

#	Article	IF	CITATIONS
127	Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere, 2018, 9, e02226.	1.0	49
128	Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution, 2018, 8, 9105-9117.	0.8	33
129	Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181240.	1.2	169
130	Computational workflow to study the seasonal variation of secondary metabolites in nine different bryophytes. Scientific Data, 2018, 5, 180179.	2.4	12
131	Drivers of intraspecific trait variation of grass and forb species in German meadows and pastures. Journal of Vegetation Science, 2017, 28, 705-716.	1.1	42
132	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	1.2	102
133	From competition to facilitation: how tree species respond to neighbourhood diversity. Ecology Letters, 2017, 20, 892-900.	3.0	123
134	Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages. Journal of Plant Ecology, 2017, 10, 242-251.	1.2	36
135	Interactions count: plant origin, herbivory and disturbance jointly explain seedling recruitment and community structure. Scientific Reports, 2017, 7, 8288.	1.6	5
136	Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types. Forest Ecology and Management, 2017, 406, 330-350.	1.4	34
137	Predicting the establishment success of introduced target species in grassland restoration by functional traits. Ecology and Evolution, 2017, 7, 7442-7453.	0.8	14
138	Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. Journal of Plant Ecology, 2017, 10, 146-157.	1.2	61
139	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20, 1414-1426.	3.0	244
140	Tree species richness attenuates the positive relationship between mutualistic ant–hemipteran interactions and leaf chewer herbivory. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171489.	1.2	10
141	Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem. Biogeochemistry, 2017, 134, 163-181.	1.7	36
142	Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China. Journal of Plant Ecology, 2017, 10, 179-189.	1.2	20
143	Limited tree richness effects on herb layer composition, richness and productivity in experimental forest stands. Journal of Plant Ecology, 2017, 10, 190-200.	1.2	16
144	Diversity of lowland hay meadows and pastures inÂWestern and Central Europe. Applied Vegetation Science, 2017, 20, 702-719.	0.9	21

HELGE BRUELHEIDE

#	Article	IF	CITATIONS
145	Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecology and Evolution, 2017, 7, 11079-11091.	0.8	26
146	Predicting individual plant performance in grasslands. Ecology and Evolution, 2017, 7, 8958-8965.	0.8	21
147	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	0.8	41
148	Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 2017, 10, 158-169.	1.2	49
149	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	1.6	38
150	Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia, 2017, 183, 455-467.	0.9	26
151	Crown and leaf traits as predictors of subtropical tree sapling growth rates. Journal of Plant Ecology, 2017, 10, 136-145.	1.2	47
152	Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecology and Evolution, 2017, 7, 7462-7474.	0.8	34
153	Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Frontiers in Microbiology, 2017, 8, 574.	1.5	35
154	Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant and Soil, 2017, 419, 305-317.	1.8	16
155	Biodiversity–ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 2017, 10, 1-3.	1.2	4
156	Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods. Scientific Reports, 2017, 7, 41801.	1.6	26
157	Taxonomic and ecological relevance of the chlorophyll <i>a</i> fluorescence signature of tree species in mixed European forests. New Phytologist, 2016, 212, 51-65.	3.5	35
158	Tree phylogenetic diversity promotes host–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160275.	1.2	41
159	Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nature Communications, 2016, 7, 11109.	5.8	185
160	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	5.8	180
161	Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecology and Evolution, 2016, 6, 2426-2438.	0.8	40
162	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	1.8	169

HELGE BRUELHEIDE

#	Article	IF	CITATIONS
163	Cocktail clustering - a new hierarchical agglomerative algorithm for extracting species groups in vegetation databases. Journal of Vegetation Science, 2016, 27, 1297-1307.	1.1	5
164	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	6.0	864
165	Functional community ecology meets restoration ecology: Assessing the restoration success of alluvial floodplain meadows with functional traits. Journal of Applied Ecology, 2016, 53, 751-764.	1.9	42
166	Drivers of earthworm incidence and abundance across European forests. Soil Biology and Biochemistry, 2016, 99, 167-178.	4.2	53
167	Reduced tolerance to simulated herbivory on clonal organs in alien genotypes: a multi-species experiment with native and introduced origins. Biological Invasions, 2016, 18, 549-563.	1.2	6
168	Stronger effect of gastropods than rodents on seedling establishment, irrespective of exotic or native plant species origin. Oikos, 2016, 125, 1467-1477.	1.2	11
169	Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biology and Biochemistry, 2016, 96, 180-190.	4.2	80
170	Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3557-3562.	3.3	196
171	Mechanisms driving diversity–productivity relationships differ between exotic and native communities and are affected by gastropod herbivory. Oecologia, 2016, 180, 1025-1036.	0.9	13
172	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	2.8	203
173	The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis. PLoS ONE, 2016, 11, e0165815.	1.1	41
174	The response of three <i>Fagus sylvatica</i> L. provenances to water availability at different soil depths. Ecological Research, 2015, 30, 853-865.	0.7	4
175	Early positive effects of tree species richness on herbivory in a largeâ€scale forest biodiversity experiment influence tree growth. Journal of Ecology, 2015, 103, 563-571.	1.9	43
176	Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecology and Evolution, 2015, 5, 3541-3556.	0.8	45
177	Tradeâ€offs between physical and chemical carbonâ€based leaf defence: of intraspecific variation and trait evolution. Journal of Ecology, 2015, 103, 1667-1679.	1.9	62
178	Relating Stomatal Conductance to Leaf Functional Traits. Journal of Visualized Experiments, 2015, , .	0.2	15
179	Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment. Journal of Vegetation Science, 2015, 26, 742-755.	1.1	29
180	Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany. PLoS ONE, 2015, 10, e0122539.	1.1	38

#	Article	IF	CITATIONS
181	Species-Specific Effects on Throughfall Kinetic Energy in Subtropical Forest Plantations Are Related to Leaf Traits and Tree Architecture. PLoS ONE, 2015, 10, e0128084.	1.1	43
182	Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nature Communications, 2015, 6, 10169.	5.8	37
183	Intraspecific variability in frost hardiness of Fagus sylvatica L European Journal of Forest Research, 2015, 134, 433-441.	1.1	28
184	Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology, 2015, 103, 978-989.	1.9	131
185	Temperate forests in continental <scp>E</scp> ast <scp>A</scp> sia. Applied Vegetation Science, 2015, 18, 3-4.	0.9	4
186	Do newcomers stick to the rules of the residents? Designing traitâ€based community assembly tests. Journal of Vegetation Science, 2015, 26, 219-232.	1.1	15
187	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
188	Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. Journal of Plant Ecology, 2015, 8, 401-410.	1.2	26
189	Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015, 205, 771-785.	3.5	107
190	Biotic Interactions Overrule Plant Responses to Climate, Depending on the Species' Biogeography. PLoS ONE, 2014, 9, e111023.	1.1	6
191	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	2.2	232
192	Maintenance of constant functional diversity during secondary succession of a subtropical forest in China. Journal of Vegetation Science, 2014, 25, 897-911.	1.1	22
193	Local performance of six clonal alien species differs between native and invasive regions in Germany and New Zealand. Austral Ecology, 2014, 39, 378-387.	0.7	10
194	Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages. Oecologia, 2014, 174, 533-543.	0.9	29
195	No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. Fungal Diversity, 2014, 66, 139-151.	4.7	41
196	Transpiration and stomatal control: a cross-species study of leaf traits in 39 evergreen and deciduous broadleaved subtropical tree species. Trees - Structure and Function, 2014, 28, 901-914.	0.9	32
197	Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 2014, 202, 864-873.	3.5	43
198	Ant community structure during forest succession in a subtropical forest in South-East China. Acta Oecologica, 2014, 61, 32-40.	0.5	18

#	Article	IF	CITATIONS
199	Tree diversity and the role of nonâ€host neighbour tree species in reducing fungal pathogen infestation. Journal of Ecology, 2014, 102, 1673-1687.	1.9	85
200	Intraspecific differences in responses to rainshelter-induced drought and competition of Fagus sylvatica L. across Germany. Forest Ecology and Management, 2014, 330, 283-293.	1.4	15
201	Tree diversity does not always improve resistance of forest ecosystems to drought. Proceedings of the United States of America, 2014, 111, 14812-14815.	3.3	228
202	Woody plant phylogenetic diversity mediates bottom–up control of arthropod biomass in species-rich forests. Oecologia, 2014, 176, 171-182.	0.9	32
203	Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). Forest Ecology and Management, 2014, 327, 118-127.	1.4	59
204	Mixed afforestation of young subtropical trees promotes nitrogen acquisition and retention. Journal of Applied Ecology, 2014, 51, 224-233.	1.9	50
205	Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm. PLoS ONE, 2014, 9, e96022.	1.1	8
206	Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species. PLoS ONE, 2014, 9, e109211.	1.1	45
207	How do evergreen and deciduous species respond to shade?—Tolerance and plasticity of subtropical tree and shrub species of South-East China. Environmental and Experimental Botany, 2013, 87, 179-190.	2.0	27
208	Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Research, 2013, 132, 593-606.	1.1	135
209	Climate change – Bad news for montane forest herb layer species?. Acta Oecologica, 2013, 50, 10-19.	0.5	9
210	Harmonizing, annotating and sharing data in biodiversity-ecosystem functioning research. Methods in Ecology and Evolution, 2013, 4, 201-205.	2.2	19
211	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	1.1	179
212	High phenotypic variation of seed traits, germination characteristics and genetic diversity of an invasive annual weed. Seed Science Research, 2013, 23, 27-40.	0.8	15
213	Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere, 2013, 4, 1-12.	1.0	70
214	Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest. PLoS ONE, 2013, 8, e66829.	1.1	53
215	Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLoS ONE, 2013, 8, e81246.	1.1	110
216	The Role of Propagule Pressure, Genetic Diversity and Microsite Availability for Senecio vernalis Invasion. PLoS ONE, 2013, 8, e57029.	1.1	18

#	Article	IF	CITATIONS
217	Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity. PLoS ONE, 2013, 8, e49618.	1.1	46
218	Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China. PLoS ONE, 2012, 7, e35742.	1.1	64
219	Effects of Dominance and Diversity on Productivity along Ellenberg's Experimental Water Table Gradients. PLoS ONE, 2012, 7, e43358.	1.1	19
220	Wood trait-environment relationships in a secondary forest succession in South-East China. Trees - Structure and Function, 2012, 26, 641-651.	0.9	14
221	Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests. Ecosystems, 2012, 15, 624-636.	1.6	42
222	The responses of grassland plants to experimentally simulated climate change depend on land use and region. Global Change Biology, 2012, 18, 127-137.	4.2	43
223	The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany, 2012, 75, 173-180.	2.0	30
224	Functional trait similarity of native and invasive herb species in subtropical China—Environment-specific differences are the key. Environmental and Experimental Botany, 2012, 83, 82-92.	2.0	13
225	Mapping plant strategy types using remote sensing. Journal of Vegetation Science, 2012, 23, 395-405.	1.1	123
226	Mechanisms promoting tree species coâ€existence: Experimental evidence with saplings of subtropical forest ecosystems of China. Journal of Vegetation Science, 2012, 23, 837-846.	1.1	46
227	Predator Assemblage Structure and Temporal Variability of Species Richness and Abundance in Forests of High Tree Diversity. Biotropica, 2012, 44, 793-800.	0.8	14
228	Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecology Letters, 2012, 15, 732-739.	3.0	80
229	Horizontal, but not vertical canopy structure is related to stand functional diversity in a subtropical slope forest. Ecological Research, 2012, 27, 181-189.	0.7	16
230	The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population SolitĂĦĂĂ—ÂMazurka. Molecular Breeding, 2012, 29, 813-830.	1.0	24
231	Effects of tree sapling diversity and nutrient addition on herb-layer invasibility in communities of subtropical species. Open Journal of Ecology, 2012, 02, 1-11.	0.4	7
232	German Vegetation Reference Database (GVRD). Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 355-355.	0.2	15
233	Individual-tree radial growth in a subtropical broad-leaved forest: The role of local neighbourhood competition. Forest Ecology and Management, 2011, 261, 499-507.	1.4	79
234	Establishment and early survival of five phreatophytes of the Taklamakan Desert. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 100-106.	0.6	14

#	Article	IF	CITATIONS
235	Differences in frost hardiness of two Norway spruce morphotypes growing at Mt. Brocken, Germany. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 120-126.	0.6	15
236	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	2.4	222
237	Predator Diversity and Abundance Provide Little Support for the Enemies Hypothesis in Forests of High Tree Diversity. PLoS ONE, 2011, 6, e22905.	1.1	74
238	Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38, 1305-1317.	1.4	137
239	The interaction of gap age and microsite for herb layer species in a near-natural spruce forest. Journal of Vegetation Science, 2011, 22, 85-95.	1.1	18
240	Exploring large vegetation databases to detect temporal trends in species occurrences. Journal of Vegetation Science, 2011, 22, 957-972.	1.1	35
241	Lack of tree layer control on herb layer characteristics in a subtropical forest, China. Journal of Vegetation Science, 2011, 22, 1120-1131.	1.1	42
242	Is the degree of clonality of forest herbs dependent on gap age? Using fingerprinting approaches to assess optimum successional stages for montane forest herbs. Ecology and Evolution, 2011, 1, 290-305.	0.8	4
243	Genetic and phenotypic differentiation between invasive and native <i>Rhododendron</i> (Ericaceae) taxa and the role of hybridization. Ecology and Evolution, 2011, 1, 392-407.	0.8	11
244	Secondary invasion of Acer negundo: the role of phenotypic responses versus local adaptation. Biological Invasions, 2011, 13, 1599-1614.	1.2	44
245	Germination responses of three grassland species differ between native and invasive origins. Ecological Research, 2011, 26, 763-771.	0.7	30
246	Maintenance of High Genetic Diversity during Invasion of <i>Rhododendron ponticum</i> . International Journal of Plant Sciences, 2011, 172, 795-806.	0.6	8
247	Invasibility or invasiveness? Effects of habitat, genotype, and their interaction on invasive Rhododendron ponticum populations. Biological Invasions, 2010, 12, 657-676.	1.2	34
248	Investigating habitat-specific plant species pools under climate change. Basic and Applied Ecology, 2010, 11, 603-611.	1.2	23
249	Life on the edge – to which degree does phreatic water sustain vegetation in the periphery of the Taklamakan Desert?. Applied Vegetation Science, 2010, 13, 56-71.	0.9	34
250	How much effort is required for proper monitoring? Assessing the effects of different survey scenarios in a dry acidic grassland. Journal of Vegetation Science, 2010, 21, 876-887.	1.1	6
251	Tree diversity promotes insect herbivory in subtropical forests of southâ€east China. Journal of Ecology, 2010, 98, 917-926.	1.9	125
252	Clonal structure and genetic diversity of three desert phreatophytes. American Journal of Botany, 2010. 97. 234-242.	0.8	30

#	Article	IF	CITATIONS
253	Twelve years of succession on sandy substrates in a postâ€mining landscape: a Markov chain analysis. Ecological Applications, 2010, 20, 1136-1147.	1.8	31
254	Gap dynamics in a near-natural spruce forest at Mt. Brocken, Germany. Forest Ecology and Management, 2010, 259, 624-632.	1.4	33
255	Interaction of gap age and microsite type for the regeneration of Picea abies. Forest Ecology and Management, 2010, 259, 1597-1605.	1.4	26
256	Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. Forest Ecology and Management, 2010, 260, 1708-1715.	1.4	97
257	Modelling epiphytic bryophyte vegetation in an urban landscape. Journal of Bryology, 2009, 31, 159-168.	0.4	12
258	A comparison of native and invasive populations of three clonal plant species in Germany and New Zealand. Journal of Biogeography, 2009, 36, 865-878.	1.4	33
259	Pluralism and diversity: trends in the use and application of ordination methods 1990â€2007. Journal of Vegetation Science, 2009, 20, 695-705.	1.1	27
260	Insights into succession processes using temporally repeated habitat models: results from a longâ€ŧerm study in a postâ€mining landscape. Journal of Vegetation Science, 2009, 20, 629-638.	1.1	27
261	Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology, 2009, 90, 1314-1325.	1.5	30
262	The response of the pseudoannual species Trientalis europaea L. to forest gap dynamics in a near-natural spruce forest. Forest Ecology and Management, 2009, 257, 1070-1077.	1.4	15
263	Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography, 2008, 31, 709-719.	2.1	56
264	Trait interactions help explain plant invasion success in the German flora. Journal of Ecology, 2008, 96, 860-868.	1.9	156
265	Regulation of the water status in three co-occurring phreatophytes at the southern fringe of the Taklamakan Desert. Journal of Plant Ecology, 2008, 1, 227-235.	1.2	36
266	Long-term datasets: From descriptive to predictive data using ecoinformatics. Journal of Vegetation Science, 2007, 18, 458.	1.1	23
267	Longâ€ŧerm datasets: From descriptive to predictive data using ecoinformatics. Journal of Vegetation Science, 2007, 18, 457-462.	1.1	9
268	Species groups can be transferred across different scales. Journal of Biogeography, 2006, 33, 1628-1642.	1.4	11
269	There may be bias in R/P ratios (realized vs. potential range) calculated for European tree species ? an illustrated comment on. Journal of Biogeography, 2006, 33, 2013-2018.	1.4	15
270	Water use by perennial plants in the transition zone between river oasis and desert in NW China. Basic and Applied Ecology, 2006, 7, 253-267.	1.2	63

#	Article	IF	CITATIONS
271	Central and peripheral Hornungia petraea populations: patterns and dynamics. Journal of Ecology, 2005, 93, 584-595.	1.9	42
272	Invasive and nativeRhododendron ponticumpopulations: is there evidence for genotypic differences in germination and growth?. Ecography, 2005, 28, 417-428.	2.1	70
273	Effects of range position, inter-annual variation and density on demographic transition rates of Hornungia petraea populations. Oecologia, 2005, 145, 382-393.	0.9	19
274	Production of Perennial Vegetation in an Oasis-desert Transition Zone in NW China - Allometric Estimation, and Assessment of Flooding and Use Effects. Plant Ecology, 2005, 181, 23-43.	0.7	45
275	Correspondence of the fine-scale spatial variation in soil chemistry and the herb layer vegetation in beech forests. Forest Ecology and Management, 2005, 210, 205-223.	1.4	32
276	Effects of slug herbivory on the seedling establishment of two montane Asteraceae species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 309-320.	0.6	20
277	Age-Specific and Season-Specific Mollusk Damage to Seedlings of Grassland Asteraceae. Journal of the Torrey Botanical Society, 2004, 131, 140.	0.1	6
278	The Impact of Altitude and Simulated Herbivory on the Growth and Carbohydrate Storage ofPetasites albus. Plant Biology, 2004, 6, 740-745.	1.8	11
279	Using standardized sampling designs from population ecology to assess biodiversity patterns of therophyte vegetation across scales. Journal of Biogeography, 2004, 31, 363-377.	1.4	21
280	Comparison of native and invasive Rhododendron ponticum populations: Growth, reproduction and morphology under field conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2004, 199, 120-133.	0.6	60
281	Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology, 2003, 166, 167-188.	0.7	28
282	Translocation of a montane meadow to simulate the potential impact of climate change. Applied Vegetation Science, 2003, 6, 23-34.	0.9	38
283	Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae. Acta Oecologica, 2003, 24, 275-283.	0.5	50
284	Translocation of a montane meadow to simulate the potential impact of climate change. , 2003, 6, 23.		2
285	Climatic factors controlling the eastern and altitudinal distribution boundary of Digitalis purpurea L. in Germany. Flora: Morphology, Distribution, Functional Ecology of Plants, 2002, 197, 475-490.	0.6	28
286	Experimental tests for determining the causes of the altitudinal distribution of Meum athamanticum Jacq. in the Harz Mountains. Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 227-241.	0.6	22
287	Altitudinal differences in herbivory on montane Compositae species. Oecologia, 2001, 129, 75-86.	0.9	56
288	A new measure of fidelity and its application to defining species groups. Journal of Vegetation Science, 2000, 11, 167-178.	1.1	124

#	Article	IF	CITATIONS
289	Towards unification of national vegetation classifications: A comparison of two methods for analysis of large data sets. Journal of Vegetation Science, 2000, 11, 295-306.	1.1	65
290	Population dynamics of endangered species in a transplanted montane meadow. Folia Geobotanica, 2000, 35, 179-189.	0.4	3
291	Evaluating the transplantation of a meadow in the Harz Mountains, Germany. Biological Conservation, 2000, 92, 109-120.	1.9	43
292	An experimental study on the impact of winter temperature on the distribution of Euphorbia amygdaloides L. in Central Germany. , 1999, , 121-150.		4
293	Selective slug grazing on montane meadow plants. Journal of Ecology, 1999, 87, 828-838.	1.9	47
294	Slug herbivory as a limiting factor for the geographical range ofArnica montana. Journal of Ecology, 1999, 87, 839-848.	1.9	120
295	Differences in soil conditions between heathlands and grasslands on Zechstein gypsum soils. Flora: Morphology, Distribution, Functional Ecology of Plants, 1997, 192, 347-359.	0.6	3
296	Using formal logic to classify vegetation. Folia Geobotanica, 1997, 32, 41-46.	0.4	51
297	Demarcation of communities in large databases. Phytocoenologia, 1997, 27, 141-159.	1.2	6
298	Arranging phytosociological tables by species-relevé groups. Journal of Vegetation Science, 1994, 5, 311-316.	1.1	10
299	A Test Collection for Dataset Retrieval in Biodiversity Research. Research Ideas and Outcomes, 0, 7, .	1.0	1
300	Readable workflows need simple data. F1000Research, 0, 3, 110.	0.8	1
301	Effects of UV-B radiation on germination characteristics in invasive plants in New Zealand. NeoBiota, 0, 26, 21-37.	1.0	12
302	The effect of niche filtering on plant species abundance in temperate grassland communities. Functional Ecology, 0, , .	1.7	2