Oleg Borshchev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of memristive devices on the base of siloxane quatrothiophene dimer. AIP Conference Proceedings, 2022, , .	0.4	0
2	Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2022, 14, 16462-16476.	8.0	11
3	Synthesis and Aggregation Behavior of Novel Linear and Branched Oligothiopheneâ€Containing Organosilicon Multipods. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
4	A new linear phenyloxazole–benzothiadiazole luminophore: crystal growth, structure and fluorescence properties. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 261-269.	1.1	5
5	Luminescent Highâ€Mobility 2D Organic Semiconductor Single Crystals. Advanced Electronic Materials, 2022, 8, .	5.1	8
6	Synthesis, characterization and organic field-effect transistors applications of novel tetrathienoacene derivatives. Dyes and Pigments, 2021, 185, 108911.	3.7	12
7	Growth of p-Sexiphenyl Crystals and its Trymethylsilyl Derivative from the Vapor Phase. Journal of Surface Investigation, 2021, 15, 24-27.	0.5	1
8	Features of the Growth of p-Quaterphenyl Crystalline Films from Solution Drops on Substrates. Journal of Surface Investigation, 2021, 15, 169-177.	0.5	1
9	(Invited) Self-Assembling Organic Semiconductors for Chemical Sensing. ECS Meeting Abstracts, 2021, MA2021-01, 1044-1044.	0.0	0
10	Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Scientific Reports, 2021, 11, 10683.	3.3	30
11	p-Quaterphenyl Crystals: Surface Properties and Nucleation in Solution and Vapor Phase. Russian Journal of Physical Chemistry A, 2021, 95, 1461-1469.	0.6	0
12	Suppression of dynamic disorder by electrostatic interactions in structurally close organic semiconductors. Physical Chemistry Chemical Physics, 2021, 23, 15485-15491.	2.8	10
13	Simple synthesis of alkyl derivatives of tetrathienoacene and their application in organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 10216-10221.	5.5	3
14	Growth from Solutions, Structure, and Spectral–Luminescent Properties of Crystalline Films of Di-n-hexyl-para-quaterphenyl. Crystallography Reports, 2021, 66, 1125-1132.	0.6	0
15	Simulation of a Central Pattern Generator Using Memristive Devices. Nanobiotechnology Reports, 2021, 16, 755-760.	0.6	2
16	Impact of N-substitution on structural, electronic, optical, and vibrational properties of a thiophene–phenylene co-oligomer. RSC Advances, 2020, 10, 28128-28138.	3.6	11
17	Synthesis, photoluminescence and thermal properties of nanostructured organosilicon luminophore based on 2,2'-bithienyl and 4,7-diphenyl-2,1,3-benzothiadiazole. IOP Conference Series: Materials Science and Engineering, 2020, 848, 012012.	0.6	0
18	Large Area Free-Standing Single Crystalline Films of p-Quinquephenyl: Growth, Structure and Photoluminescence Properties. Crystals, 2020, 10, 363.	2.2	9

OLEG BORSHCHEV

#	Article	IF	CITATIONS
19	Crystals of Phenylene–Oxazole Oligomer with a Central Benzothiadiazole Fragment. Journal of Surface Investigation, 2020, 14, 540-543.	0.5	3
20	Fluorinated Thiophene-Phenylene Co-Oligomers for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 9507-9519.	8.0	38
21	Toward probing of the local electron–phonon interaction in small-molecule organic semiconductors with Raman spectroscopy. Journal of Chemical Physics, 2020, 153, 174303.	3.0	11
22	Unoccupied Electron States of Ultrathin Films of Thiophene–Phenylene Cooligomers on the Surface of Polycrystalline Gold. Physics of the Solid State, 2020, 62, 1960-1966.	0.6	2
23	Conduction band electronic states of ultrathin layers of thiophene/phenylene co-oligomers on an oxidized silicon surface. Journal of Electron Spectroscopy and Related Phenomena, 2019, 235, 40-45.	1.7	17
24	Solubility and Crystal Growth of p-Quaterphenyl and Its Derivative with Trimethylsilyl Terminal Substituents. Russian Journal of Physical Chemistry A, 2019, 93, 1741-1746.	0.6	6
25	Synthesis of Nanostructured Organosilicon Luminophores Based on Phenyloxazoles. Russian Journal of Organic Chemistry, 2019, 55, 25-41.	0.8	9
26	Impact of terminal substituents on the electronic, vibrational and optical properties of thiophene–phenylene co-oligomers. Physical Chemistry Chemical Physics, 2019, 21, 11578-11588.	2.8	36
27	When dendrimers are not better – rational design of nanolayers for high-performance organic electronic devices. Nanoscale, 2019, 11, 4463-4470.	5.6	1
28	Growth of New Linear Phenylene-Oxazole Oligomers with a Central Benzothiadiazole Fragment from Solutions of Crystals. Physics of the Solid State, 2019, 61, 2438-2441.	0.6	1
29	Growth Anisotropy and Crystal Structure of Linear Conjugated Oligomers. Physics of the Solid State, 2019, 61, 2321-2324.	0.6	4
30	Highly luminescent crystals of a novel linear π-conjugated thiophene–phenylene co-oligomer with a benzothiadiazole fragment. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 1076-1085.	1.1	7
31	Ultrafast intramolecular energy transfer in a nanostructured organosilicon luminophore based on <i>p</i> -terphenyl and 1,4-bis(5-phenyloxazol-2-yl)benzene. Journal of Materials Chemistry C, 2019, 7, 14612-14624.	5.5	9
32	Improved tetrathienoacene synthesis. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012007.	0.6	3
33	Heck Synthesis of New Organosilicon Oligo(arylenevinylenes). Russian Journal of Organic Chemistry, 2019, 55, 1562-1568.	0.8	0
34	Growth from Solution, Structure, and Optical Properties of Single-Crystal para-Quaterphenyl Films. Crystallography Reports, 2018, 63, 139-148.	0.6	14
35	Influence of the structure of electron-donating aromatic units in organosilicon luminophores based on 2,1,3-benzothiadiazole electron-withdrawing core on their absorption-luminescent properties. Dyes and Pigments, 2018, 155, 284-291.	3.7	16
36	Molecular Selfâ€Doping Controls Luminescence of Pure Organic Single Crystals. Advanced Functional Materials, 2018, 28, 1800116.	14.9	37

OLEG BORSHCHEV

#	Article	IF	CITATIONS
37	Novel highly efficient blue-emitting branched oligoarylsilanes. Journal of Physics: Conference Series, 2018, 1124, 051010.	0.4	0
38	Highly Sensitive Air-Stable Easily Processable Gas Sensors Based on Langmuir–Schaefer Monolayer Organic Field-Effect Transistors for Multiparametric H ₂ S and NH ₃ Real-Time Detection. ACS Applied Materials & Interfaces, 2018, 10, 43831-43841.	8.0	39
39	H2S and NH3 Detection with Langmuir-Schaefer Monolayer Organic Field-Effect Transistors. Proceedings (mdpi), 2018, 2, .	0.2	0
40	Growth from Solutions, Structure, and Photoluminescence of Single-Crystal Plates of p-Terphenyl and Its Trimethylsilyl Derivative. Crystallography Reports, 2018, 63, 819-831.	0.6	15
41	Unoccupied Electron States and the Formation of Interface between Films of Dimethyl-Substituted Thiophene–Phenylene Coolygomers and Oxidized Silicon Surface. Physics of the Solid State, 2018, 60, 1029-1034.	0.6	3
42	Organosilicon dimer of BTBT as a perspective semiconductor material for toxic gas detection with monolayer organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 9649-9659.	5.5	37
43	Synthesis and photostability of 1,4-bis(5-phenyloxazol-2-yl)benzene (POPOP) structural isomers and their trimethylsilyl derivatives. Dyes and Pigments, 2017, 141, 128-136.	3.7	10
44	Influence of chemical structure of branched and dendritic organosilicon luminophores on their optical and thermal properties. Organic Photonics and Photovoltaics, 2017, 5, 1-8.	1.3	6
45	Luminescent Organic Semiconducting Langmuir Monolayers. ACS Applied Materials & Interfaces, 2017, 9, 18078-18086.	8.0	30
46	Test of SensL SiPM coated with NOL-1 wavelength shifter in liquid xenon. Journal of Instrumentation, 2017, 12, P05014-P05014.	1.2	4
47	Synthesis of organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene for efficient monolayer Langmuir–Blodgett organic field effect transistors. Chemical Communications, 2017, 53, 885-888.	4.1	38
48	Synthesis and optical properties of highly luminescent phenyloxazole silane polymer. Mendeleev Communications, 2017, 27, 377-379.	1.6	4
49	Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield. Journal of Instrumentation, 2017, 12, P05013-P05013.	1.2	16
50	Organosilicon derivatives of BTBT for monolayer organic field effect transistors. , 2017, , .		2
51	Nanostructured organosilicon luminophores for efficient and fast elementary particles photodetectors. , 2017, , .		1
52	A novel highly efficient nanostructured organosilicon luminophore with unusually fast photoluminescence. Journal of Materials Chemistry C, 2016, 4, 4699-4708.	5.5	25
53	Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 691-692.	1.6	11
54	Monolayer organic field effect phototransistors: photophysical characterization and modeling. , 2016, , .		1

OLEG BORSHCHEV

#	Article	IF	CITATIONS
55	Highly Luminescent Solution-Grown Thiophene-Phenylene Co-Oligomer Single Crystals. ACS Applied Materials & Interfaces, 2016, 8, 10088-10092.	8.0	36
56	Direct-write printing of reactive oligomeric alkoxysilanes as an affordable and highly efficient route for promoting local adhesion of silver inks on polymer substrates. Journal of Materials Chemistry C, 2016, 4, 2211-2218.	5.5	16
57	Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks. ACS Applied Materials & Interfaces, 2015, 7, 11755-11764.	8.0	37
58	Nanostructured organosilicon luminophores as a new concept of nanomaterials for highly efficient down-conversion of light. , 2015, , .		8
59	Thiophene-based monolayer OFETs prepared by Langmuir techniques. Proceedings of SPIE, 2015, , .	0.8	7
60	Novel Cross-Linked Luminescent Silicone Composites Based on Reactive Nanostructured Organosilicon Luminophores. Silicon, 2015, 7, 191-200.	3.3	10
61	Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews, 2014, 83, 885-985.	6.5	182
62	Easily Processable Highly Ordered Langmuir-Blodgett Films of Quaterthiophene Disiloxane Dimer for Monolayer Organic Field-Effect Transistors. Langmuir, 2014, 30, 15327-15334.	3.5	45
63	Self-assembled organic semiconductors for monolayer field-effect transistors. Polymer Science - Series C, 2014, 56, 32-46.	1.7	15
64	Novel wavelength shifters to improve sensitivity of vacuum photodetectors to Cherenkov light. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 766, 160-162.	1.6	4
65	Molecularly Smooth Single-Crystalline Films of Thiophene–Phenylene Co-Oligomers Grown at the Gas–Liquid Interface. Crystal Growth and Design, 2014, 14, 1726-1737.	3.0	49
66	Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators. Scientific Reports, 2014, 4, 6549.	3.3	38
67	Oligothiophene-based monolayer field-effect transistors prepared by Langmuir-Blodgett technique. Applied Physics Letters, 2013, 103, 043310.	3.3	36
68	Formation of Self-Assembled Organosilicon-Functionalized Quinquethiophene Monolayers by Fast Processing Techniques. Langmuir, 2012, 28, 16186-16195.	3.5	25
69	Effect of Molecular Structure of α,α′-Dialkylquaterthiophenes and Their Organosilicon Multipods on Ordering, Phase Behavior, and Charge Carrier Mobility. Journal of Physical Chemistry C, 2012, 116, 22727-22736.	3.1	31
70	Development of VUV wavelength shifter for the use with a visible light photodetector in noble gas filled detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695, 403-406.	1.6	18
71	Material solubility and molecular compatibility effects in the design of fullerene/polymer composites for organic bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 18433.	6.7	48
72	Mechanisms of molecular polarization of bithiophenesilane dendrimers in solutions. Polymer Science - Series A, 2011, 53, 569-577.	1.0	2

Oleg Borshchev

#	Article	IF	CITATIONS
73	Synthesis and properties of a new luminescent oligoarylsilane dendrimer. Mendeleev Communications, 2011, 21, 89-91.	1.6	6
74	Luminescence spectral properties of dendritic oligothiophenesilane macromolecules. Russian Journal of Physical Chemistry A, 2010, 84, 1979-1985.	0.6	7
75	Branched oligothiophene silanes with the efficient nonradiative energy transfer between the fragments. Russian Chemical Bulletin, 2010, 59, 797-805.	1.5	13
76	Gas sensing with self-assembled monolayer field-effect transistors. Organic Electronics, 2010, 11, 895-898.	2.6	90
77	Synthesis of Monochlorosilyl Derivatives of Dialkyloligothiophenes for Self-Assembling Monolayer Field-Effect Transistors. Organometallics, 2010, 29, 4213-4226.	2.3	32
78	First Organosilicon Molecular Antennas. Chemistry of Materials, 2009, 21, 447-455.	6.7	39
79	Bithiophenesilane Dendrimers:  Synthesis and Thermal and Optical Properties. Organometallics, 2007, 26, 5165-5173.	2.3	35
80	Synthesis and optical properties of linear and branched bithienylsilanes. Mendeleev Communications, 2007, 17, 34-36.	1.6	30
81	Synthesis of bithiophenesilane dendrimer of the first generation. Russian Chemical Bulletin, 2005, 54, 684-690.	1.5	23
82	Spectroscopic Assessment of Charge arrier Mobility in Crystalline Organic Semiconductors. Advanced Electronic Materials, 0, , 2100579.	5.1	6
83	Pulse Programming of Resistive States of BTBTâ€Based Organic Memristive Device with High Endurance. Physica Status Solidi - Rapid Research Letters, 0, , 2100471.	2.4	2
84	Crystals of Linear Oligophenyls: Surface Properties, Nucleation and Growth. , 0, , .		1
85	Operationally Stable Ultrathin Organic Field Effect Transistors Based on Siloxane Dimers of Benzothieno[3,2â€b][1]Benzothiophene Suitable for Ethanethiol Detection. Advanced Electronic Materials, 0, , 2101039.	5.1	6