Svetla PEtkova-Nikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches. Journal of Cryptology, 2011, 24, 292-321.	2.1	213
2	Consolidating Masking Schemes. Lecture Notes in Computer Science, 2015, , 764-783.	1.0	128
3	Higher-Order Threshold Implementations. Lecture Notes in Computer Science, 2014, , 326-343.	1.0	114
4	A More Efficient AES Threshold Implementation. Lecture Notes in Computer Science, 2014, , 267-284.	1.0	85
5	Threshold Implementations of All 3 $\tilde{A}-3$ and 4 $\tilde{A}-4$ S-Boxes. Lecture Notes in Computer Science, 2012, , 76-91.	1.0	67
6	Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties. Cryptography and Communications, 2016, 8, 247-276.	0.9	57
7	Secure Hardware Implementation of Non-linear Functions in the Presence of Glitches. Lecture Notes in Computer Science, 2009, , 218-234.	1.0	52
8	Trade-Offs for Threshold Implementations Illustrated on AES. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1188-1200.	1.9	48
9	Masking AES with \$\$d+1\$\$ Shares in Hardware. Lecture Notes in Computer Science, 2016, , 194-212.	1.0	41
10	Does Coupling Affect the Security of Masked Implementations?. Lecture Notes in Computer Science, 2017, , 1-18.	1.0	40
11	Threshold implementations of small S-boxes. Cryptography and Communications, 2015, 7, 3-33.	0.9	36
12	Masking AES With d+1 Shares in Hardware. , 2016, , .		32
13	Efficient and First-Order DPA Resistant Implementations of Keccak. Lecture Notes in Computer Science, 2014, , 187-199.	1.0	27
14	Whirlwind: a new cryptographic hash function. Designs, Codes, and Cryptography, 2010, 56, 141-162.	1.0	25
15	Securing the PRESENT Block Cipher Against Combined Side-Channel Analysis and Fault Attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 3291-3301.	2.1	25
16	Higher-Order Threshold Implementation of the AES S-Box. Lecture Notes in Computer Science, 2016, , 259-272.	1.0	23
17	CAPA: The Spirit of Beaver Against Physical Attacks. Lecture Notes in Computer Science, 2018, , 121-151.	1.0	21
18	TuLP: A Family of Lightweight Message Authentication Codes for Body Sensor Networks. Journal of Computer Science and Technology, 2014, 29, 53-68.	0.9	17

2

Svetla PEtkova-Nikova

#	Article	IF	CITATIONS
19	Using Normal Bases for Compact Hardware Implementations of the AES S-Box. Lecture Notes in Computer Science, 2008, , 236-245.	1.0	16
20	More Efficient Private Circuits II through Threshold Implementations. , 2016, , .		12
21	VerMI: Verification Tool for Masked Implementations. , 2018, , .		12
22	M&M: Masks and Macs against Physical Attacks. Iacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 25-50.	0.0	12
23	On the non-minimal codewords in binary Reed–Muller codes. Discrete Applied Mathematics, 2003, 128, 65-74.	0.5	10
24	Exploring the storj network. , 2021, , .		9
25	My Gadget Just Cares for Me - How NINA Can Prove Security Against Combined Attacks. Lecture Notes in Computer Science, 2020, , 35-55.	1.0	9
26	Rhythmic Keccak: SCA Security and Low Latency in HW. lacr Transactions on Cryptographic Hardware and Embedded Systems, 0, , 269-290.	0.0	9
27	Decomposition of permutations in a finite field. Cryptography and Communications, 2019, 11, 379-384.	0.9	8
28	On lower bounds on the size of designs in compact symmetric spaces of rank 1. Archiv Der Mathematik, 1997, 68, 81-88.	0.3	6
29	Improvement of the Delsarte Bound for Ï"-Designs When It Is Not the Best Bound Possible. Designs, Codes, and Cryptography, 2003, 28, 201-222.	1.0	6
30	Authenticated and auditable data sharing via smart contract. , 2020, , .		5
31	Practically Efficient Secure Distributed Exponentiation Without Bit-Decomposition. Lecture Notes in Computer Science, 2018, , 291-309.	1.0	4
32	Constructions of S-boxes with uniform sharing. Cryptography and Communications, 2019, 11, 385-398.	0.9	3
33	A Privacy-Preserving Device Tracking System Using a Low-Power Wide-Area Network. Lecture Notes in Computer Science, 2018, , 347-369.	1.0	2
34	Guards in Action: First-Order SCA Secure Implementations of Ketje Without Additional Randomness. , 2018, , .		2
35	Let's Tessellate: Tiling for Security Against Advanced Probe and Fault Adversaries. Lecture Notes in Computer Science, 2021, , 181-195.	1.0	1
36	Resilient uniformity: applying resiliency in masking. Cryptography and Communications, 2022, 14, 41-58.	0.9	1

#	Article	IF	CITATIONS
37	LLTI: Low-Latency Threshold Implementations. IEEE Transactions on Information Forensics and Security, 2021, , 1-1.	4.5	1
38	A Modification of Jarecki and Saxena Proactive RSA Signature Scheme. , 2007, , .		0
39	Galois geometries and applications. Designs, Codes, and Cryptography, 2010, 56, 85-86.	1.0	0
40	Theory of Implementation Security Workshop (TIs 2016). , 2016, , .		0
41	Guards in action: First-order SCA secure implementations of KETJE without additional randomness. Microprocessors and Microsystems, 2019, 71, 102859.	1.8	0
42	A Weakness in Some Oblivious Transfer and Zero-Knowledge Protocols. Lecture Notes in Computer Science, 2006, , 348-363.	1.0	0
43	TIS'19., 2019,,.		0