Wolfgang Weninger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681259/publications.pdf

Version: 2024-02-01

157 17,949 61 papers citations h-index

172 172 172 27389
all docs docs citations times ranked citing authors

130

g-index

#	Article	IF	CITATIONS
1	A case of COVID-19 vaccination-associated forme fruste purpura fulminans. British Journal of Dermatology, 2022, 186, e1-e1.	1.4	6
2	Cutaneous signs and mechanisms of inflammasomopathies. Annals of the Rheumatic Diseases, 2022, 81, 454-465.	0.5	4
3	Bacterial antigen is directly delivered to the draining lymph nodes and activates CD8 + T cells during Staphylococcus aureus skin infection. Immunology and Cell Biology, 2021, 99, 299-308.	1.0	4
4	Hypopyon sign as an unusual complication of varicella infection in aÂgirl with atopic dermatitis. Wiener Medizinische Wochenschrift, 2021, 171, 61-64.	0.5	1
5	$\hat{l}\pm\hat{l}^2\hat{l}^3\hat{l}$ T cells play a vital role in fetal human skin development and immunity. Journal of Experimental Medicine, 2021, 218, .	4.2	17
6	The Extracellular Matrix in Skin Inflammation and Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 682414.	1.8	84
7	Cutaneous ulceration as primary presentation of TEMPI syndrome. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e891-e894.	1.3	5
8	Amelanotic B16-F10 Melanoma Compatible with Advanced Three-Dimensional Imaging Modalities. Journal of Investigative Dermatology, 2021, 141, 2090-2094.e6.	0.3	4
9	Singleâ€cell RNA sequencing profiling in a patient with discordant primary cutaneous Bâ€cell and Tâ€cell lymphoma reveals micromilieuâ€driven immune skewing. British Journal of Dermatology, 2021, 185, 1013-1025.	1.4	13
10	Visualizing murine breast and melanoma tumor microenvironment using intravital multiphoton microscopy. STAR Protocols, 2021, 2, 100722.	0.5	4
11	Partial loss of actin nucleator actinâ€related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunology and Cell Biology, 2020, 98, 93-113.	1.0	20
12	Cutaneous signs in SARSâ€CoVâ€2 infection: a plea for more rigorous peer review in the time of COVIDâ€19. British Journal of Dermatology, 2020, 183, 1140-1142.	1.4	11
13	Abrogation of RAB27A expression transiently affects melanoma cell proliferation. Pigment Cell and Melanoma Research, 2020, 33, 889-894.	1.5	5
14	RAB27A/Melanophilin Blocker Inhibits MelanomaÂCell Motility and Invasion. Journal of Investigative Dermatology, 2020, 140, 1470-1473.e3.	0.3	9
15	Murine and related chapparvoviruses are nephro-tropic and produce novel accessory proteins in infected kidneys. PLoS Pathogens, 2020, 16, e1008262.	2.1	23
16	Murine Skin-resident $\hat{I}^3\hat{I}$ T Cells Impair the Immune Response to HSV in Skin. Infectious Disorders - Drug Targets, 2020, 20, 309-317.	0.4	1
17	A prospective observational study of pigmented naevi changes in psoriasis patients on biologic therapy. Australasian Journal of Dermatology, 2019, 60, e14-e19.	0.4	3
18	Cutaneous Immune Cell-Microbiota Interactions Are Controlled by Epidermal JunB/AP-1. Cell Reports, 2019, 29, 844-859.e3.	2.9	13

#	Article	IF	Citations
19	Mast cell granules: Modulating adaptive immune response remotely. Journal of Allergy and Clinical Immunology, 2019, 143, 1731-1733.	1.5	8
20	RAB27A promotes melanoma cell invasion and metastasis ⟨i⟩via⟨ i⟩ regulation of proâ€invasive exosomes. International Journal of Cancer, 2019, 144, 3070-3085.	2.3	72
21	The lymphoid cell network in the skin. Immunology and Cell Biology, 2018, 96, 485-496.	1.0	8
22	The impact of ischemiaâ€reperfusion injuries on skin resident murine dendritic cells. European Journal of Immunology, 2018, 48, 1014-1019.	1.6	9
23	Imaging of mast cells. Immunological Reviews, 2018, 282, 58-72.	2.8	20
24	Research Techniques Made Simple: Two-Photon IntravitalÂlmaging of the Skin. Journal of Investigative Dermatology, 2018, 138, 720-725.	0.3	20
25	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	13.5	89
26	Eosinophils Determine Dermal Thickening and Water Loss in an MC903 Model of Atopic Dermatitis. Journal of Investigative Dermatology, 2018, 138, 2606-2616.	0.3	39
27	Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation <i>via</i> VING2. Nucleic Acids Research, 2017, 45, gkw1300.	6.5	12
28	Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 2017, 9, .	5.8	208
29	Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Current Opinion in Immunology, 2017, 44, 34-42.	2.4	30
30	A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity, 2017, 47, 374-388.e6.	6.6	171
31	Resolving a chronic inflammation mystery. Nature Medicine, 2017, 23, 914-916.	15.2	6
32	Editorial: Inflammation in the CNS: Advancing the Field Using Intravital Imaging. Frontiers in Immunology, 2017, 8, 1155.	2.2	1
33	Gamma-Delta T Cells in the Skin. , 2017, , 51-66.		1
34	Fibroblast activation protein is dispensable in the anti-influenza immune response in mice. PLoS ONE, 2017, 12, e0171194.	1.1	11
35	Innate Lymphoid Cells in the Skin. , 2017, , 35-50.		0
36	Effector T Lymphocyte Migration to and Within Non-Lymphoid Tissues. , 2016, , 493-504.		1

#	Article	IF	CITATIONS
37	Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. Journal of Investigative Dermatology, 2016, 136, 1479-1489.	0.3	56
38	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
39	Phagocyte mayHEME caused by severe hemolysis. Nature Immunology, 2016, 17, 1335-1337.	7.0	1
40	Inducing Ischemia-reperfusion Injury in the Mouse Ear Skin for Intravital Multiphoton Imaging of Immune Responses. Journal of Visualized Experiments, 2016, , .	0.2	9
41	Antigenâ€specific T cells fully conserve antitumour function following cryopreservation. Immunology and Cell Biology, 2016, 94, 411-418.	1.0	21
42	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.3	62
43	Recent advances in microscopic techniques for visualizing leukocytes in vivo. F1000Research, 2016, 5, 915.	0.8	12
44	Neutrophils., 2016,, 147-167.		2
45	Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids. Journal of Visualized Experiments, 2015, , e53486.	0.2	35
46	FRT – FONDATION RENE TOURAINE. Experimental Dermatology, 2015, 24, 803-820.	1.4	0
47	The embryogenesis of the equine femorotibial joint: The equine interzone. Equine Veterinary Journal, 2015, 47, 620-622.	0.9	4
48	Ferdinand von Hebra Preis – Österreichische Gesellschaft für Dermatologie und Venerologie 2014. JDDG - Journal of the German Society of Dermatology, 2015, 13, 363-364.	0.4	0
49	IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. Journal of Allergy and Clinical Immunology, 2015, 136, 1653-1663.e7.	1.5	123
50	Pathogenesis of atopic dermatitis: A short review. Cogent Biology, 2015, 1, 1103459.	1.7	27
51	Group 2 Innate Lymphoid Cells in the Regulation of Immune Responses. Advances in Immunology, 2015, 125, 111-154.	1.1	64
52	Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nature Communications, 2015, 6, 6301.	5.8	138
53	Real-Time Imaging of Dendritic Cell Responses to Sterile Tissue Injury. Journal of Investigative Dermatology, 2015, 135, 1181-1184.	0.3	14
54	IRGM3 Contributes to Immunopathology and Is Required for Differentiation of Antigen-Specific Effector CD8 ⁺ T Cells in Experimental Cerebral Malaria. Infection and Immunity, 2015, 83, 1406-1417.	1.0	8

#	Article	IF	Citations
55	ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nature Communications, 2015, 6, 6970.	5.8	135
56	The role of chemokines in cutaneous immunosurveillance. Immunology and Cell Biology, 2015, 93, 337-346.	1.0	27
57	Apolipoprotein A-l Limits the Negative Effect of Tumor Necrosis Factor on Lymphangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2443-2450.	1.1	12
58	Shedding light on cell cycle control by T and B lymphocytes. Cell Cycle, 2015, 14, 2381-2382.	1.3	1
59	The Skin Immune Atlas: Three-Dimensional Analysis of Cutaneous Leukocyte Subsets by Multiphoton Microscopy. Journal of Investigative Dermatology, 2015, 135, 84-93.	0.3	96
60	CD326loCD103loCD11blo Dermal Dendritic Cells Are Activated by Thymic Stromal Lymphopoietin during Contact Sensitization in Mice. Journal of Immunology, 2014, 193, 2504-2511.	0.4	49
61	Real-Time Imaging Reveals the Dynamics of Leukocyte Behaviour during Experimental Cerebral Malaria Pathogenesis. PLoS Pathogens, 2014, 10, e1004236.	2.1	67
62	Granzyme B Promotes Cytotoxic Lymphocyte Transmigration via Basement Membrane Remodeling. Immunity, 2014, 41, 960-972.	6.6	102
63	Realâ€ŧime cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell and Melanoma Research, 2014, 27, 764-776.	1.5	116
64	Dermal group 2 innate lymphoid cells in atopic dermatitis and allergy. Current Opinion in Immunology, 2014, 31, 108-114.	2.4	27
65	Antigen expression level threshold tunes the fate of CD8 T cells during primary hepatic immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2540-9.	3.3	81
66	The Skin-Resident Immune Network. Current Dermatology Reports, 2014, 3, 13-22.	1.1	101
67	Leukocyte migration in the interstitial space of non-lymphoidÂorgans. Nature Reviews Immunology, 2014, 14, 232-246.	10.6	194
68	A Promiscuous Lipid-Binding Protein Diversifies the Subcellular Sites of Toll-like Receptor Signal Transduction. Cell, 2014, 156, 705-716.	13.5	192
69	Targeting <scp>R</scp> hoâ€xscp>GTPases in immune cell migration and inflammation. British Journal of Pharmacology, 2014, 171, 5491-5506.	2.7	85
70	Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nature Immunology, 2014, 15, 45-53.	7.0	242
71	Monocyte homeostasis and the plasticity of inflammatory monocytes. Cellular Immunology, 2014, 291, 22-31.	1.4	98
72	Intrahepatic Activation of Naive CD4+ T Cells by Liver-Resident Phagocytic Cells. Journal of Immunology, 2014, 193, 2087-2095.	0.4	28

#	Article	IF	CITATIONS
73	T cell migration in intact lymph nodes in vivo. Current Opinion in Cell Biology, 2014, 30, 17-24.	2.6	37
74	The use of Keratinocytes: Things we should keep in mind!. European Surgery - Acta Chirurgica Austriaca, 2013, 45, 154-160.	0.3	3
75	Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunology, 2013, 14, 564-573.	7.0	410
76	Mesenchymal Cells Hold the Key to Immune Cell Recruitment to and Migration within Melanoma. Journal of Investigative Dermatology, 2013, 133, 2138-2140.	0.3	0
77	A quantitative approach to histopathological dissection of elastin-related disorders using multiphoton microscopy. British Journal of Dermatology, 2013, 169, 869-879.	1.4	29
78	Shedding light on cutaneous innate immune responses: the intravital microscopy approach. Immunology and Cell Biology, 2013, 91, 263-270.	1.0	18
79	Modulation of NOXA and MCL-1 as a Strategy for Sensitizing Melanoma Cells to the BH3-Mimetic ABT-737. Clinical Cancer Research, 2012, 18, 783-795.	3.2	98
80	Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nature Immunology, 2012, 13, 67-76.	7.0	149
81	Inflammasome-Dependent IFN- \hat{I}^3 Drives Pathogenesis in <i>Streptococcus pneumoniae</i> Meningitis. Journal of Immunology, 2012, 189, 4970-4980.	0.4	65
82	Phenotype and functions of conventional dendritic cells are not compromised in aged mice. Immunology and Cell Biology, 2012, 90, 722-732.	1.0	31
83	A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN- \hat{l}^3 for Autoreactive CD8+ T-Cell Accumulation in the Skin. Journal of Investigative Dermatology, 2012, 132, 1869-1876.	0.3	286
84	Intravital multiphoton imaging of immune responses in the mouse ear skin. Nature Protocols, 2012, 7, 221-234.	5.5	162
85	Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature, 2012, 486, 545-548.	13.7	483
86	Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Frontiers in Cellular Neuroscience, 2012, 6, 67.	1.8	30
87	Intravital Multiphoton Imaging of Immune Cells. Advances in Intelligent and Soft Computing, 2012, , 3-16.	0.2	1
88	Abstract 1827: Developing chemotherapeutics which selectively disable the actin cytoskeleton of tumor cells. , 2012 , , .		0
89	Visualizing the Neutrophil Response to Sterile Tissue Injury in Mouse Dermis Reveals a Three-Phase Cascade of Events. Journal of Investigative Dermatology, 2011, 131, 2058-2068.	0.3	187
90	Targeted induction of antigen expression within dendritic cells modulates antigen-specific immunity afforded by recombinant BCG. Vaccine, 2011, 29, 1374-1381.	1.7	14

#	Article	IF	Citations
91	How nickel turns on innate immune cells. Immunology and Cell Biology, 2011, 89, 1-2.	1.0	21
92	Active Immunotherapy Combined With Blockade of a Coinhibitory Pathway Achieves Regression of Large Tumor Masses in Cancer-prone Mice. Molecular Therapy, 2011, 19, 1727-1736.	3.7	40
93	Cutaneous immunosurveillance by self-renewing dermal $\hat{I}^3\hat{I}$ T cells. Journal of Experimental Medicine, 2011, 208, 505-518.	4.2	248
94	Langerhans cells are precommitted to immune tolerance induction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18049-18054.	3.3	150
95	Analysis of Behavior and Trafficking of Dendritic Cells within the Brain during Toxoplasmic Encephalitis. PLoS Pathogens, 2011, 7, e1002246.	2.1	61
96	Cell-autonomous and environmental contributions to the interstitial migration of T cells. Seminars in Immunopathology, 2010, 32, 257-274.	2.8	53
97	Herpes Simplex Virus Infects Skin $\hat{l}^3\hat{l}'$ T Cells before Langerhans Cells and Impedes Migration of Infected Langerhans Cells by Inducing Apoptosis and Blocking E-Cadherin Downregulation. Journal of Immunology, 2010, 185, 477-487.	0.4	52
98	Advances in imaging the innate and adaptive immune response to <i>Toxoplasma gondii</i> . Future Microbiology, 2010, 5, 1321-1328.	1.0	14
99	Trafficking of immune cells in the central nervous system. Journal of Clinical Investigation, 2010, 120, 1368-1379.	3.9	426
100	<i>In vivo</i> Imaging of Cutaneous T-Cell Lymphoma Migration to the Skin. Cancer Research, 2009, 69, 2704-2708.	0.4	25
101	Dynamic Imaging of CD8+ T Cells and Dendritic Cells during Infection with Toxoplasma gondii. PLoS Pathogens, 2009, 5, e1000505.	2.1	107
102	Plasmacytoid Dendritic Cells Are Dispensable during Primary Influenza Virus Infection. Journal of Immunology, 2009, 182, 871-879.	0.4	89
103	Behavior of Parasite-Specific Effector CD8+ T Cells in the Brain and Visualization of a Kinesis-Associated System of Reticular Fibers. Immunity, 2009, 30, 300-311.	6.6	184
104	Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell, 2009, 139, 891-906.	13.5	3,319
105	CD44 Mediates Successful Interstitial Navigation by Killer T Cells and Enables Efficient Antitumor Immunity. Immunity, 2008, 29, 971-985.	6.6	85
106	Visualizing dendritic cell migration within the skin. Histochemistry and Cell Biology, 2008, 130, 1131-1146.	0.8	52
107	Twoâ€photon imaging of effector Tâ€cell behavior: lessons from a tumor model. Immunological Reviews, 2008, 221, 147-162.	2.8	33
108	New insights into the nerve end organ of human skin. Experimental Dermatology, 2008, 13, 579-580.	1.4	0

#	Article	IF	Citations
109	Dendritic cell behaviour in vivo : lessons learned from intravital twoâ€photon microscopy. Immunology and Cell Biology, 2008, 86, 428-438.	1.0	42
110	Two distinct activation states of plasmacytoid dendritic cells induced by influenza virus and CpG 1826 oligonucleotide. Journal of Leukocyte Biology, 2008, 83, 610-620.	1.5	41
111	Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites. PLoS Pathogens, 2008, 4, e1000222.	2.1	213
112	Transforming Growth Factor- \hat{I}^2 Receptor Blockade Augments the Effectiveness of Adoptive T-Cell Therapy of Established Solid Cancers. Clinical Cancer Research, 2008, 14, 3966-3974.	3.2	76
113	Asymmetric T Lymphocyte Division in the Initiation of Adaptive Immune Responses. Science, 2007, 315, 1687-1691.	6.0	777
114	Regulatory T Cells Reversibly Suppress Cytotoxic T Cell Function Independent of Effector Differentiation. Immunity, 2006, 25, 129-141.	6.6	456
115	Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunological Reviews, 2006, 213, 195-212.	2.8	77
116	Random migration precedes stable target cell interactions of tumor-infiltrating T cells. Journal of Experimental Medicine, 2006, 203, 2749-2761.	4.2	201
117	CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. Journal of Cell Biology, 2006, 175, 563-569.	2.3	94
118	Activation of bone marrow–resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunology, 2005, 6, 1029-1037.	7.0	207
119	Bone Marrow Is a Major Reservoir and Site of Recruitment for Central Memory CD8+ T Cells. Immunity, 2005, 22, 259-270.	6.6	325
120	CXCL12 Mediates CCR7-independent Homing of Central Memory Cells, But Not Naive T Cells, in Peripheral Lymph Nodes. Journal of Experimental Medicine, 2004, 199, 1113-1120.	4.2	110
121	Sheet Preparations Expose the Dermal Nerve Plexus of Human Skin and Render the Dermal Nerve End Organ Accessible to Extensive Analysis. Journal of Investigative Dermatology, 2004, 122, 177-182.	0.3	56
122	Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature, 2003, 424, 88-93.	13.7	1,010
123	Chemokine regulation of naıÌ^ve T cell traffic in health and disease. Seminars in Immunology, 2003, 15, 257-270.	2.7	66
124	Visualizing T Cell Migration in vivo. International Archives of Allergy and Immunology, 2003, 132, 277-293.	0.9	17
125	Naive T Cell Recruitment to Nonlymphoid Tissues: A Role for Endothelium-Expressed CC Chemokine Ligand 21 in Autoimmune Disease and Lymphoid Neogenesis. Journal of Immunology, 2003, 170, 4638-4648.	0.4	178
126	Increased and prolonged inflammation and angiogenesis in delayed-type hypersensitivity reactions elicited in the skin of thrombospondin-2–deficient mice. Blood, 2002, 99, 538-545.	0.6	73

#	Article	IF	CITATIONS
127	Migration and differentiation of CD8+ T cells. Immunological Reviews, 2002, 186, 221-233.	2.8	136
128	Migratory Properties of Naive, Effector, and Memory Cd8+ T Cells. Journal of Experimental Medicine, 2001, 194, 953-966.	4.2	456
129	Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. British Journal of Dermatology, 2001, 145, 3-9.	1.4	52
130	Inflammatory Chemokine Transport and Presentation in HEV. Journal of Experimental Medicine, 2001, 194, 1361-1374.	4.2	504
131	Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. Journal of Clinical Investigation, 2001, 108, 871-878.	3.9	350
132	Keratinocytes Express the CD146 (Muc18/S-Endo) Antigen in Tissue Culture and During Inflammatory Skin Diseases11This work was supported by a grant from the Austrian Science Foundation (Grant) Tj ETQq0 0 0	rg ®ī ∄Ove	rlo ch 10 Tf 50
133	Specialized Contributions by $\hat{1}\pm(1,3)$ -Fucosyltransferase-IV and FucT-VII during Leukocyte Rolling in Dermal Microvessels. Immunity, 2000, 12, 665-676.	6.6	250
134	Humane und bovine Keratinozyten exprimieren Prionen-Protein in vitro und in situ., 2000,, 22-24.		0
135	Kaposi Sarkome sind positiv fýr VEGFR-3 und Podoplanin: Ein erster direkter Beweis fýr die Abstammung dieses Tumors vom lymphatischen Endothel. , 2000, , 351-354.		0
136	Reverse Transcription-Polymerase Chain Reaction Products of Alternatively Spliced mRNAs Form DNA Heteroduplexes and Heteroduplex Complexes. Journal of Biological Chemistry, 1999, 274, 2613-2615.	1.6	39
137	UVA and UVB Radiation Differentially Regulate Vascular Endothelial Growth Factor Expression in Keratinocyte-derived Cell Lines and in Human Keratinocytes. Photochemistry and Photobiology, 1999, 70, 674-679.	1.3	59
138	Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Research and Treatment, 1999, 56, 143-149.	1.1	68
139	Angiosarcomas Express Mixed Endothelial Phenotypes of Blood and Lymphatic Capillaries. American Journal of Pathology, 1999, 154, 385-394.	1.9	984
140	Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Laboratory Investigation, 1999, 79, 243-51.	1.7	73
141	Vascular endothelial growth factor is constitutively expressed in normal human salivary glands and is secreted in the saliva of healthy individuals. , 1998, 186, 186-191.		49
142	Retinoids Downregulate Vascular Endothelial Growth Factor/Vascular Permeability Factor Production by Normal Human Keratinocytes. Journal of Investigative Dermatology, 1998, 111, 907-911.	0.3	53
143	Expression of bcl-2, bcl-x, bax and bak in Renal Parenchyma, Oncocytomas and Renal Cell Carcinomas. Pathology Research and Practice, 1998, 194, 837-845.	1.0	15
144	Identification of a Human cDNA Encoding a Novel Bcl-x Isoform. Biochemical and Biophysical Research Communications, 1998, 248, 147-152.	1.0	28

#	Article	IF	Citations
145	Human Keratinocytes Express Cellular Prion-Related Proteinin Vitro and during Inflammatory Skin Diseases. American Journal of Pathology, 1998, 153, 1353-1358.	1.9	70
146	Retinoids downregulate vascular endothelial growth factor/vascular permeability factor production by normal human keratinocytes. Journal of Dermatological Science, 1998, 16, S74.	1.0	0
147	Induction of inducible nitric oxide synthase expression in human secretory endometrium. Human Reproduction, 1998, 13, 436-444.	0.4	46
148	Vascular endothelial growth factor is constitutively expressed in normal human salivary glands and is secreted in the saliva of healthy individuals., 1998, 186, 186.		2
149	Nitric oxide synthases in Kaposi's sarcoma are expressed predominantly by vessels and tissue macrophages. Laboratory Investigation, 1998, 78, 949-55.	1.7	9
150	Differences in tumor microvessel density between squamous cell carcinomas and basal cell carcinomas may relate to their different biologic behavior. Journal of Cutaneous Pathology, 1997, 24, 364-369.	0.7	21
151	No HHV8 in non-Kaposi's sarcoma mucocutaneous lesions from immunodeficient HIV-positive patients. Lancet, The, 1996, 347, 1700-1701.	6.3	25
152	Presence of endothelial calcium-dependent nitric oxide synthase in breast apocrine metaplasia. British Journal of Cancer, 1996, 74, 1423-1426.	2.9	24
153	Expression of the CD40 antigen on normal endothelial cells and in benign and malignant tumours of vascular origin. Histopathology, 1996, 29, 517-524.	1.6	13
154	CD40 antigen is expressed by endothelial cells and tumor cells in Kaposi's sarcoma. American Journal of Pathology, 1996, 148, 1387-96.	1.9	52
155	Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma. American Journal of Pathology, 1996, 149, 1851-69.	1.9	136
156	Vascular endothelial growth factor production in normal epidermis and in benign and malignant epithelial skin tumors. Laboratory Investigation, 1996, 75, 647-57.	1.7	27
157	Human Keratinocytes Express the Three Major Splice Forms of Vascular Endothelial Growth Factor. Journal of Investigative Dermatology, 1995, 104, 7-10.	0.3	112