
Joris Winderickx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lsm7 phase-separated condensates trigger stress granule formation. Nature Communications, 2022, 13,	12.8	5
2	TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Current Biology, 2021, 31, 297-309.e8.	3.9	31
3	Yeasts as Complementary Model Systems for the Study of the Pathological Repercussions of Enhanced Synphilin-1 Clycation and Oxidation. International Journal of Molecular Sciences, 2021, 22, 1677.	4.1	1
4	Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22, 5756.	4.1	2
5	Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms, 2021, 9, 1498.	3.6	1
6	The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms, 2021, 9, 1871.	3.6	3
7	Coordinated glucose-induced Ca2+ and pH responses in yeast Saccharomyces cerevisiae. Cell Calcium, 2021, 100, 102479.	2.4	6
8	Editorial: Yeast Differentiation: From Cell-to-Cell Heterogeneity to Replicative Aging and Regulated Cell Death. Frontiers in Cell and Developmental Biology, 2021, 9, 823447.	3.7	1
9	Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Frontiers in Cell and Developmental Biology, 2020, 8, 592159.	3.7	7
10	Decreased Vacuolar Ca2+ Storage and Disrupted Vesicle Trafficking Underlie Alpha-Synuclein-Induced Ca2+ Dysregulation in S. cerevisiae. Frontiers in Genetics, 2020, 11, 266.	2.3	6
11	A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Frontiers in Molecular Biosciences, 2020, 7, 48.	3.5	5
12	The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention?. Acta Neuropathologica Communications, 2019, 7, 31.	5.2	49
13	αâ€5ynuclein toxicity in yeast and human cells is caused by cell cycle reâ€entry and autophagy degradation of ribonucleotide reductase 1. Aging Cell, 2019, 18, e12922.	6.7	19
14	Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein Tau in biological samples. Analytica Chimica Acta, 2018, 1015, 74-81.	5.4	60
15	pH homeostasis in yeast; the phosphate perspective. Current Genetics, 2018, 64, 155-161.	1.7	35
16	The Impact of ESCRT on Aβ1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 406.	2.9	19
17	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
18	A Mitochondria-Associated Oxidative Stress Perspective on Huntington's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 329.	2.9	71

#	Article	IF	CITATIONS
19	Modifying Rap1-signalling by targeting Pde6î´is neuroprotective in models of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 50.	10.8	9
20	The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	39
21	Recent Insights on Alzheimer's Disease Originating from Yeast Models. International Journal of Molecular Sciences, 2018, 19, 1947.	4.1	29
22	pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-Ã-trois to stress tolerance and longevity. Microbial Cell, 2018, 5, 119-136.	3.2	42
23	New perspectives from South-Y-East, not all about death A report of the 12th International Meeting on Yeast Apoptosis in Bari, Italy, May 14th-18th, 2017. Microbial Cell, 2018, 5, 112-115.	3.2	0
24	Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mechanisms of Ageing and Development, 2017, 161, 288-305.	4.6	34
25	Yeast models of Parkinson's disease-associated molecular pathologies. Current Opinion in Genetics and Development, 2017, 44, 74-83.	3.3	49
26	Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochemical and Biophysical Research Communications, 2017, 493, 708-717.	2.1	17
27	The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genetics, 2017, 13, e1006835.	3.5	45
28	A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 30134.	3.3	12
29	Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Research, 2016, 16, fow036.	2.3	28
30	Hexokinase 2; Tangled between sphingolipid and sugar metabolism. Cell Cycle, 2016, 15, 3016-3017.	2.6	1
31	Yeast as a Model for Alzheimer's Disease: Latest Studies and Advanced Strategies. Methods in Molecular Biology, 2016, 1303, 197-215.	0.9	24
32	The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Frontiers in Cellular Neuroscience, 2015, 9, 231.	3.7	47
33	Tau Monoclonal Antibody Generation Based on Humanized Yeast Models. Journal of Biological Chemistry, 2015, 290, 4059-4074.	3.4	21
34	Ca 2+ homeostasis in the budding yeast Saccharomyces cerevisiae : Impact of ER/Golgi Ca 2+ storage. Cell Calcium, 2015, 58, 226-235.	2.4	20
35	The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer's disease. AIMS Molecular Science, 2015, 2, 144-160.	0.5	6
36	Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 17-32.	2.3	64

#	Article	IF	CITATIONS
37	The protein kinase Sch9 is a key regulator of sphingolipid metabolism in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2014, 25, 196-211.	2.1	66
38	Microbial Programmed Necrosis: The Cost of Conflicts Between Stress and Metabolism. , 2014, , 253-274.		0
39	Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathologica Communications, 2014, 2, 14.	5.2	203
40	A network-based approach to identify substrate classes of bacterial glycosyltransferases. BMC Genomics, 2014, 15, 349.	2.8	337
41	Evidence for adenylate cyclase as a scaffold protein for Ras2–Ira interaction in Saccharomyces cerevisie. Cellular Signalling, 2014, 26, 1147-1154.	3.6	6
42	The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca2+ levels to α-synuclein toxicity in Parkinson's disease models. Cell Death and Differentiation, 2013, 20, 465-477.	11.2	76
43	O1-07-05: In vivo tau spreading relies on the transsynaptic transfer of soluble wild-type tau species. , 2013, 9, P142-P142.		0
44	Lentiviral Delivery of the Human Wild-type Tau Protein Mediates a Slow and Progressive Neurodegenerative Tau Pathology in the Rat Brain. Molecular Therapy, 2013, 21, 1358-1368.	8.2	31
45	Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO Journal, 2013, 32, 3041-3054.	7.8	71
46	Yeast Stress, Aging, and Death. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-3.	4.0	6
47	The Benefits of Humanized Yeast Models to Study Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	28
48	The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae. Frontiers in Oncology, 2012, 2, 77.	2.8	35
49	SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on Sir2-mediated mitophagy. Autophagy, 2012, 8, 1494-1509.	9.1	113
50	Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in <i>Saccharomyces cerevisiae</i> . Biochemical Journal, 2011, 434, 243-251.	3.7	59
51	Segregation of Protein Aggregates Involves Actin and the Polarity Machinery. Cell, 2011, 147, 959-961.	28.9	71
52	Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast. Biochemical Society Transactions, 2011, 39, 1476-1481.	3.4	23
53	Yeast as a Model System to Study Tau Biology. International Journal of Alzheimer's Disease, 2011, 2011, 1-16.	2.0	25
54	The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS Journal, 2011, 278, 3978-3990.	4.7	184

#	Article	IF	CITATIONS
55	Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Current Genetics, 2010, 56, 1-32.	1.7	189
56	Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Research, 2010, 10, 992-1005.	2.3	41
57	Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO Journal, 2010, 29, 2515-2526.	7.8	257
58	Yeast unfolds the road map toward $\hat{l}\pm$ -synuclein-induced cell death. Cell Death and Differentiation, 2010, 17, 746-753.	11.2	53
59	Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner. PLoS ONE, 2010, 5, e13700.	2.5	36
60	Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Letters, 2009, 583, 113-117.	2.8	63
61	The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Research, 2009, 9, 226-239.	2.3	30
62	Ydc1p ceramidase triggers organelle fragmentation, apoptosis and accelerated ageing in yeast. Cellular and Molecular Life Sciences, 2008, 65, 1933-1942.	5.4	56
63	The influence of wort aeration and yeast preoxygenation on beer staling processes. Food Chemistry, 2008, 107, 242-249.	8.2	29
64	Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9. FEMS Yeast Research, 2008, 8, 1276-1288.	2.3	35
65	Protein folding diseases and neurodegeneration: Lessons learned from yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1381-1395.	4.1	88
66	Phosphorylation, lipid raft interaction and traffic of α-synuclein in a yeast model for Parkinson. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1767-1780.	4.1	104
67	Functional Mitochondria Are Required for α-Synuclein Toxicity in Aging Yeast. Journal of Biological Chemistry, 2008, 283, 7554-7560.	3.4	121
68	Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology, 2006, 7, R37.	9.6	89
69	Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Letters, 2006, 580, 1903-1907.	2.8	51
70	A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 312-318.	3.8	79
71	Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Division, 2006, 1, 3.	2.4	129
72	Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 2006, 224, 598-611.	3.2	133

5

#	Article	IF	CITATIONS
73	Ceramide Involvement in Apoptosis and Apoptotic Diseases. Mini-Reviews in Medicinal Chemistry, 2006, 6, 699-709.	2.4	57
74	Microtubule Binding and Clustering of Human Tau-4R and Tau-P301L Proteins Isolated from Yeast Deficient in Orthologues of Glycogen Synthase Kinase-3β or cdk5. Journal of Biological Chemistry, 2006, 281, 25388-25397.	3.4	55
75	PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Molecular Microbiology, 2005, 55, 862-880.	2.5	170
76	Characterization of αâ€synuclein aggregation and synergistic toxicity with protein tau in yeast. FEBS Journal, 2005, 272, 1386-1400.	4.7	94
77	The minimum domain of Pho81 is not sufficient to control the Pho85–Rim15 effector branch involved in phosphate starvation-induced stress responses. Current Genetics, 2005, 48, 18-33.	1.7	22
78	The Ccr4-Not Complex Independently Controls both Msn2-Dependent Transcriptional Activation—via a Newly Identified Glc7/Bud14 Type I Protein Phosphatase Module—and TFIID Promoter Distribution. Molecular and Cellular Biology, 2005, 25, 488-498.	2.3	61
79	Identification and Isolation of a Hyperphosphorylated, Conformationally Changed Intermediate of Human Protein Tau Expressed in Yeast. Biochemistry, 2005, 44, 11466-11475.	2.5	77
80	SKN1, a novel plant defensin-sensitivity gene inSaccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Letters, 2005, 579, 1973-1977.	2.8	43
81	Yeast as a model for medical and medicinal research. Trends in Pharmacological Sciences, 2005, 26, 265-273.	8.7	175
82	The Novel Yeast PAS Kinase Rim15 Orchestrates GO-Associated Antioxidant Defense Mechanisms. Cell Cycle, 2004, 3, 460-466.	2.6	154
83	Activation State of the Ras2 Protein and Glucose-induced Signaling in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 46715-46722.	3.4	116
84	Glucose and sucrose: hazardous fast-food for industrial yeast?. Trends in Biotechnology, 2004, 22, 531-537.	9.3	132
85	Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Current Genetics, 2004, 45, 83-89.	1.7	43
86	TheSaccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast, 2004, 21, 367-377.	1.7	65
87	The novel yeast PAS kinase Rim 15 orchestrates GO-associated antioxidant defense mechanisms. Cell Cycle, 2004, 3, 462-8.	2.6	84
88	The alcohol acetyl transferase gene is a target of the cAMP/PKA and FGM nutrient-signalling pathways. FEMS Yeast Research, 2003, 4, 285-296.	2.3	72
89	The Cap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 2003, 50, 911-929.	2.5	141
90	TOR and PKA Signaling Pathways Converge on the Protein Kinase Rim15 to Control Entry into GO. Molecular Cell, 2003, 12, 1607-1613.	9.7	277

#	Article	IF	CITATIONS
91	Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1 , Lg-ATF1 , and ATF2 Control the Formation of a Broad Range of Volatile Esters. Applied and Environmental Microbiology, 2003, 69, 5228-5237.	3.1	328
92	From feast to famine; adaptation to nutrient availability in yeast. Topics in Current Genetics, 2003, , 305-386.	0.7	27
93	Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Molecular Microbiology, 2002, 43, 835-842.	2.5	55
94	Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Research, 2002, 2, 183-201.	2.3	341
95	The Saccharomyces cerevisiae Phosphotyrosyl Phosphatase Activator Proteins Are Required for a Subset of the Functions Disrupted by Protein Phosphatase 2A Mutations. Experimental Cell Research, 2001, 264, 372-387.	2.6	25
96	The role of hexose transport and phosphorylation in cAMP signalling in the yeastSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 33-45.	2.3	49
97	Glucose-sensing mechanisms in eukaryotic cells. Trends in Biochemical Sciences, 2001, 26, 310-317.	7.5	278
98	Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Molecular Microbiology, 2000, 38, 348-358.	2.5	205
99	Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme and Microbial Technology, 2000, 26, 819-825.	3.2	122
100	A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. International Journal of Food Microbiology, 2000, 55, 103-107.	4.7	10
101	[43] Molecular analysis of human red/ green visual pigment gene locus: relationship to color vision. Methods in Enzymology, 2000, 316, 651-670.	1.0	16
102	Multiple Hexose Transporters of Schizosaccharomyces pombe. Journal of Bacteriology, 2000, 182, 2153-2162.	2.2	78
103	The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 302, 103-119.	4.2	28
104	Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology (United Kingdom), 1999, 145, 703-714.	1.8	69
105	A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology, 1999, 32, 1002-1012.	2.5	339
106	A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Molecular Microbiology, 1999, 33, 363-376.	2.5	41
107	Transcript analysis of 250 novel yeast genes from chromosome XIV. , 1999, 15, 329-350.		33
108	Deletion ofSFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeastSaccharomyces cerevisiae, causes G2 arrest. Yeast, 1999, 15, 1097-1109.	1.7	35

#	Article	IF	CITATIONS
109	Structure–function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochemical Journal, 1999, 343, 159-168.	3.7	65
110	Structure‒function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochemical Journal, 1999, 343, 159.	3.7	43
111	During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. , 1998, 14, 255-269.		38
112	The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology (United Kingdom), 1997, 143, 2627-2637.	1.8	107
113	Identification of Genes with Nutrient-controlled Expression by PCR-mapping in the YeastSaccharomyces cerevisiae. , 1997, 13, 973-984.		12
114	Differential Requirement of the Yeast Sugar Kinases for Sugar Sensing in Establishing the Catabolite-Repressed State. FEBS Journal, 1996, 241, 633-643.	0.2	119
115	Regulation of genes encoding subunits of the trehalose synthase complex in. Molecular Genetics and Genomics, 1996, 252, 470.	2.4	9
116	Serine/alanine amino acid polymorphism of the L-cone photopigment assessed by dual Rayleigh-type color matches. Vision Research, 1994, 34, 377-382.	1.4	23
117	Androgen-dependent expression of cystatin-related protein (CRP) in the exorbital lacrimal gland of the rat. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 165-170.	2.5	31
118	Multiple binding sites for nuclear factors in the 5′-upstream region of two α2u-globulin genes: Implications for hormone-regulated and tissue-specific control. Journal of Steroid Biochemistry and Molecular Biology, 1993, 45, 353-366.	2.5	4
119	Serine/alanine amino acid polymorphism of the L and M cone pigments: Effects on rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Research, 1993, 33, 2139-2152.	1.4	37
120	Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. Human Molecular Genetics, 1993, 2, 1413-1421.	2.9	101
121	Polymorphism in red photopigment underlies variation in colour matching. Nature, 1992, 356, 431-433.	27.8	299
122	Defective colour vision associated with a missense mutation in the human green visual pigment gene. Nature Genetics, 1992, 1, 251-256.	21.4	88
123	Tissue-Specific Expression and Androgen Regulation of Different Genes Encoding Rat Prostatic 22-Kilodalton Glycoproteins Homologous to Human and Rat Cystatin. Molecular Endocrinology, 1990, 4, 657-667.	3.7	60
124	Kallikrein-related protease in the rat ventral prostate: cDNA cloning and androgen regulation. Molecular and Cellular Endocrinology, 1989, 62, 217-226.	3.2	22
125	Glucocorticoid receptor binding to defined regions of α2 u-globulin genes. Biochemical and Biophysical Research Communications, 1987, 149, 1099-1105.	2.1	12
126	Comparison of the 5' upstream putative regulatory sequences of three members of the alpha2u-globulin gene family. FEBS Journal, 1987, 165, 521-529.	0.2	21