
Jiantai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8681207/publications.pdf Version: 2024-02-01

Ιιλνιτλι

#	Article	IF	CITATIONS
1	Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 1121-1130.	4.6	92
2	Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale, 2018, 10, 5834-5839.	2.8	90
3	Facile regrowth of Mg-Fe ₂ O ₃ /P-Fe ₂ O ₃ homojunction photoelectrode for efficient solar water oxidation. Journal of Materials Chemistry A, 2018, 6, 13412-13418.	5.2	80
4	Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 23478-23485.	5.2	73
5	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	5.2	72
6	NiO Nanoparticles Anchored on Phosphorusâ€Doped αâ€Fe ₂ O ₃ Nanoarrays: An Efficient Hole Extraction p–n Heterojunction Photoanode for Water Oxidation. ChemSusChem, 2018, 11, 2156-2164.	3.6	69
7	Metal-Free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction. Journal of Energy Chemistry, 2021, 60, 546-555.	7.1	66
8	Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction. Journal of Power Sources, 2016, 302, 343-351.	4.0	59
9	In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers, 2017, 4, 1173-1181.	3.0	57
10	Palladium Nanoparticles Anchored on Three-Dimensional Nitrogen-Doped Carbon Nanotubes as a Robust Electrocatalyst for Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7918-7923.	3.2	50
11	N,Cu-Codoped Carbon Nanosheet/Au/CuBi ₂ O ₄ Photocathodes for Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 7257-7264.	3.2	48
12	Crystal lattice distortion in ultrathin Co(OH) ₂ nanosheets inducing elongated Co–O _{OH} bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 5809-5817.	4.6	43
13	Heterojunction and Oxygen Vacancy Modification of ZnO Nanorod Array Photoanode for Enhanced Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 4094-4101.	3.6	42
14	Two‣tep Synthesis of Cobalt Iron Alloy Nanoparticles Embedded in Nitrogenâ€Doped Carbon Nanosheets/Carbon Nanotubes for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 2358-2366.	3.6	41
15	Optimization of iron-doped Ni ₃ S ₂ nanosheets by disorder engineering for oxygen evolution reaction. Nanoscale, 2019, 11, 2355-2365.	2.8	41
16	Achieving High Activity and Selectivity of Nitrogen Reduction via Fe–N ₃ Coordination on Iron Single-Atom Electrocatalysts at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 12809-12816.	3.2	41
17	Palladium nanoparticles anchored on NCNTs@NGS with a three-dimensional sandwich-stacked framework as an advanced electrocatalyst for ethanol oxidation. Journal of Materials Chemistry A, 2018, 6, 14717-14724.	5.2	40
18	Layered Double Hydroxide onto Perovskite Oxide-Decorated ZnO Nanorods for Modulation of Carrier Transfer Behavior in Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 2452-2459.	4.0	40

Jiantai

#	Article	IF	CITATIONS
19	Activating a hematite nanorod photoanode <i>via</i> fluorine-doping and surface fluorination for enhanced oxygen evolution reaction. Nanoscale, 2020, 12, 3259-3266.	2.8	40
20	In Situ Synthesis of MoS ₂ on C ₃ N ₄ To Form MoS ₂ /C ₃ N ₄ with Interfacial Mo–N Coordination for Electrocatalytic Reduction of N ₂ to NH ₃ . ACS Sustainable Chemistry and Engineering, 2020, 8, 8814-8822.	3.2	40
21	Strongly Coupled Interface Structure in CoFe/Co ₃ O ₄ Nanohybrids as Efficient Oxygen Evolution Reaction Catalysts. ChemSusChem, 2019, 12, 4442-4451.	3.6	32
22	Palladium Nanoparticles with Surface Enrichment of Palladium Oxide Species Immobilized on the Aniline-Functionalized Graphene As an Advanced Electrocatalyst of Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 14621-14628.	3.2	31
23	A oxygen vacancy-modulated homojunction structural CuBi ₂ O ₄ photocathodes for efficient solar water reduction. Nanoscale, 2020, 12, 15193-15200.	2.8	29
24	Zr(OH) ₄ atalyzed Controllable Selective Oxidation of Anilines to Azoxybenzenes, Azobenzenes and Nitrosobenzenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
25	Amorphous CoFe Double Hydroxides Decorated with Nâ€Đoped CNTs for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2019, 12, 2679-2688.	3.6	26
26	Unsaturated Mo in Mo ₄ O ₄ N ₃ for efficient catalytic transfer hydrogenation of nitrobenzene using stoichiometric hydrazine hydrate. Green Chemistry, 2021, 23, 8545-8553.	4.6	24
27	Unraveling the Cooperative Synergy of Palladium/Tin Oxide/Aniline-Functionalized Carbon Nanotubes Enabled by Layer-by-Layer Synthetic Strategy for Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10008-10015.	3.2	23
28	A protective roasting strategy for preparation of stable mesoporous hollow CeO ₂ microspheres with enhanced catalytic activity for one-pot synthesis of imines from benzyl alcohols and anilines. Inorganic Chemistry Frontiers, 2019, 6, 829-836.	3.0	22
29	Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution. Nanoscale, 2021, 13, 18763-18772.	2.8	21
30	Ruthenium nanoparticles supported on nitrogen-doped porous carbon as a highly efficient catalyst for hydrogen evolution from ammonia borane. New Journal of Chemistry, 2019, 43, 4377-4384.	1.4	19
31	Cobalt(II) acetylacetonate covalently anchored onto magnetic mesoporous silica nanospheres as a catalyst for epoxidation of olefins. Materials Chemistry and Physics, 2015, 156, 9-15.	2.0	17
32	Tuning effect of amorphous Fe2O3 on Mn3O4 for efficient atom-economic synthesis of imines at low temperature: improving [O] transfer cycle of Mn3+/Mn2+ in Mn3O4. Catalysis Science and Technology, 2020, 10, 5628-5640.	2.1	17
33	Bifunctional citrate-Ni _{0.9} Co _{0.1} (OH) _{<i>x</i>} layer coated fluorine-doped hematite for simultaneous hole extraction and injection towards efficient photoelectrochemical water oxidation. Nanoscale, 2021, 13, 14197-14206.	2.8	16
34	Interfacial N–Cu–S coordination mode of CuSCN/C ₃ N ₄ with enhanced electrocatalytic activity for hydrogen evolution. Nanoscale, 2019, 11, 12938-12945.	2.8	13
35	Hydrogen generation from toxic formaldehyde catalyzed by low-cost Pd–Sn alloys driven by visible light. Journal of Materials Chemistry A, 2020, 8, 9616-9628.	5.2	13
36	Preparation of a magnetic mesoporous Fe ₃ O ₄ –Pd@TiO ₂ photocatalyst for the efficient selective reduction of aromatic cyanides. New Journal of Chemistry, 2019, 43, 6294-6302.	1.4	12

JIANTAI

#	Article	IF	CITATIONS
37	Decorating the Cocatalyst Membrane with Coordinated Tannic Acid and Ternary Metal for Advancing Photoelectrochemical Performance of F-Doped Hematite Photoanodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 13047-13055.	3.2	12
38	Catalytically Active Coâ^'N x Species Stabilized on Nitrogenâ€doped Porous Carbon for Efficient Hydrogenation and Dehydrogenation of Nâ€heteroarenes. ChemCatChem, 2020, 12, 4406-4415.	1.8	10
39	The enhanced water splitting activity of a ZnO-based photoanode by modification with self-doped lanthanum ferrite. Nanoscale, 2021, 13, 11215-11222.	2.8	9
40	Promoting Role of Iron Series Elements Modification on Palladium/Nitrogen Doped Carbon for the Semihydrogenation of Phenylacetylene. ChemCatChem, 2019, 11, 1510-1517.	1.8	8
41	Understanding Oxygen Bubbleâ€Triggered Exfoliation of Graphite Toward the Lowâ€Defect Graphene. Advanced Materials Interfaces, 2021, 8, 2001899.	1.9	5
42	Ce-Doped α-FeOOH as a High-Performance Catalyst for Atom-Economic Synthesis of Imines: Enhanced Oxygen-Activating Capacity and Acidic Property. Industrial & Engineering Chemistry Research, 2021, 60, 18316-18326.	1.8	5
43	Zr(OH)4 Catalyzed Controllable Selective Oxidation of Anilines to Azoxybenzenes, Azobenzenes and Nitrosobenzenes. Angewandte Chemie, 2022, 134, e202112907.	1.6	4
44	Transpiration: from Chinese cabbage waste to supercapacitors with ultrahigh cycling stability. Materials Chemistry Frontiers, 2019, 3, 2046-2050.	3.2	3