
Sridhar Viamajala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8680252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Techno-Economic Assessment of Mixed-Furan Production from Diverse Biomass Hydrolysates. ACS Sustainable Chemistry and Engineering, 2021, 9, 3428-3438.	6.7	12
2	Production of Organic Acids via Autofermentation of Microalgae: A Promising Approach for Sustainable Algal Biorefineries. Industrial & Engineering Chemistry Research, 2020, 59, 1772-1780.	3.7	9
3	In situ and Ex situ Catalytic Pyrolysis of Microalgae and Integration With Pyrolytic Fractionation. Frontiers in Chemistry, 2020, 8, 786.	3.6	22
4	Quantification of Lipid Content in Oleaginous Biomass Using Thermogravimetry. Methods in Molecular Biology, 2019, 1995, 121-129.	0.9	1
5	High Productivity Cultivation of Microalgae without Concentrated CO ₂ Input. ACS Sustainable Chemistry and Engineering, 2019, 7, 1933-1943.	6.7	38
6	Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 237-247.	6.7	16
7	Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renewable Energy, 2018, 127, 989-997.	8.9	61
8	Using life cycle assessment and techno-economic analysis in a real options framework to inform the design of algal biofuel production facilities. Bioresource Technology, 2017, 225, 418-428.	9.6	49
9	Quantification of triglyceride content in oleaginous materials using thermo-gravimetry. Journal of Analytical and Applied Pyrolysis, 2017, 128, 232-237.	5.5	6
10	Flash Pyrolysis of Oleaginous Biomass in a Fluidized-Bed Reactor. Energy & Fuels, 2017, 31, 8326-8334.	5.1	15
11	Cultivation of Microalgae at Extreme Alkaline pH Conditions: A Novel Approach for Biofuel Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7284-7294.	6.7	95
12	High-Yield Production of Fatty Nitriles by One-Step Vapor-Phase Thermocatalysis of Triglycerides. ACS Omega, 2017, 2, 9013-9020.	3.5	28
13	Uptake of inorganic and organic nutrient species during cultivation of a Chlorella isolate in anaerobically digested dairy waste. Biotechnology Progress, 2016, 32, 1336-1342.	2.6	6
14	Evaluating the relative impacts of operational and financial factors on the competitiveness of an algal biofuel production facility. Bioresource Technology, 2016, 220, 271-281.	9.6	16
15	High-yield production of fuel- and oleochemical-precursors from triacylglycerols in a novel continuous-flow pyrolysis reactor. Applied Energy, 2016, 179, 755-764.	10.1	24
16	Toward Sustainable Synthesis of PA12 (Nylon-12) Precursor from Oleic Acid Using Ring-Closing Metathesis. ACS Sustainable Chemistry and Engineering, 2016, 4, 5703-5710.	6.7	11
17	One-pot synthesis and recovery of fatty acid methyl esters (FAMEs) from microalgae biomass. Catalysis Today, 2016, 269, 29-39.	4.4	24
18	Efficient Production of Alkanolamides from Microalgae. Industrial & Engineering Chemistry Research, 2015, 54, 4060-4065.	3.7	15

SRIDHAR VIAMAJALA

#	Article	IF	CITATIONS
19	Simple Ring-Closing Metathesis Approach for Synthesis of PA11, 12, and 13 Precursors from Oleic Acid. ACS Sustainable Chemistry and Engineering, 2014, 2, 2831-2836.	6.7	23
20	Cross-metathesis approach to produce precursors of nylon 12 and nylon 13 from microalgae. RSC Advances, 2014, 4, 55622-55628.	3.6	24
21	Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Biodegradation, 2013, 24, 437-450.	3.0	44
22	Reactive Extraction of Triglycerides as Fatty Acid Methyl Esters using Lewis Acidic Chloroaluminate Ionic Liquids. Energy & Fuels, 2012, 26, 6411-6418.	5.1	12
23	Polyhydroxyalkanoate quantification in organic wastes and pure cultures using a single-step extraction and 1H NMR analysis. Water Science and Technology, 2012, 66, 1000-1006.	2.5	18
24	Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresource Technology, 2011, 102, 11018-11026.	9.6	239
25	Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Biodegradation, 2011, 22, 983-995.	3.0	18
26	Multiple mechanisms of uranium immobilization by <i>Cellulomonas</i> sp. strain ES6. Biotechnology and Bioengineering, 2011, 108, 264-276.	3.3	88
27	Maximizing Algal Growth in Batch Reactors Using Sequential Change in Light Intensity. Applied Biochemistry and Biotechnology, 2010, 161, 511-522.	2.9	42
28	Detecting cellulase penetration into corn stover cell walls by immunoâ€electron microscopy. Biotechnology and Bioengineering, 2009, 103, 480-489.	3.3	56
29	Permeable reactive biobarriers for in situ Cr(VI) reduction: Bench scale tests using <i>Cellulomonas</i> sp. strain ES6. Biotechnology and Bioengineering, 2008, 101, 1150-1162.	3.3	22
30	Toxic Effects of Chromium(VI) on Anaerobic and Aerobic Growth of Shewanella oneidensis MR-1. Biotechnology Progress, 2008, 20, 87-95.	2.6	75
31	Solubilization, solution equilibria, and biodegradation of PAH's under thermophilic conditions. Chemosphere, 2007, 66, 1094-1106.	8.2	59
32	Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresource Technology, 2007, 98, 612-622.	9.6	51
33	Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose. Biotechnology Progress, 2007, 23, 1333-1339.	2.6	406
34	Catalyst Transport in Corn Stover Internodes Elucidating Transport Mechanisms Using Direct Blue-I. Applied Biochemistry and Biotechnology, 2006, 130, 509-527.	2.9	16
35	Selenite reduction by a denitrifying culture: batch- and packed-bed reactor studies. Applied Microbiology and Biotechnology, 2006, 71, 953-962.	3.6	15
36	Modeling chromate reduction inShewanella oneidensis MR-1: Development of a novel dual-enzyme kinetic model. Biotechnology and Bioengineering, 2003, 83, 790-797.	3.3	49

#	Article	IF	CITATIONS
37	Chromate/nitrite interactions inShewanella oneidensis MR-1: Evidence for multiple hexavalent chromium [Cr(VI)] reduction mechanisms dependent on physiological growth conditions. Biotechnology and Bioengineering, 2002, 78, 770-778.	3.3	97
38	Chromate Reduction in Shewanella oneidensis MR-1 Is an Inducible Process Associated with Anaerobic Growth. Biotechnology Progress, 2002, 18, 290-295.	2.6	73