Camilla Baratto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8679594/publications.pdf

Version: 2024-02-01

147726 133188 4,113 118 31 59 citations h-index g-index papers 120 120 120 4842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces. Optics Letters, 2021, 46, 2453.	1.7	40
2	New Trends in Optical Resonant Bio-Chemical Sensing. IEEE Sensors Journal, 2021, 21, 12856-12867.	2.4	3
3	Mineralization of 3D Osteogenic Model Based on Gelatin-Dextran Hybrid Hydrogel Scaffold Bioengineered with Mesenchymal Stromal Cells: A Multiparametric Evaluation. Materials, 2021, 14, 3852.	1.3	7
4	Study of the Degradation of Biobased Plastic after Stress Tests in Water. Coatings, 2021, 11, 1330.	1.2	7
5	Tunable Filters for Visible Light Based on Resonant VO2 Planar Thin Films. , 2020, , .		o
6	On the alignment of ZnO nanowires by Langmuir – Blodgett technique for sensing application. Applied Surface Science, 2020, 528, 146959.	3.1	12
7	Vertically Coupling ZnO Nanorods onto MoS2 Flakes for Optical Gas Sensing. Chemosensors, 2020, 8, 19.	1.8	14
8	Nonlinear Transparency of Dielectric - Metal - Dielectric 1D photonic crystals in the THz Range. , 2020, , .		0
9	Effect of light activation on chemical gas sensors based on aligned nanowires. , 2020, , .		0
10	Conductometric Sensing with Individual InAs Nanowires. Sensors, 2019, 19, 2994.	2.1	22
11	Sensing through the optical radiation pattern in dielectric metastructures. , 2019, , .		1
12	Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis. Journal of Physical Chemistry C, 2018, 122, 5026-5031.	1.5	26
13	Growth and properties of ZnO nanorods by RF-sputtering for detection of toxic gases. RSC Advances, 2018, 8, 32038-32043.	1.7	31
14	Anomalous gas sensing behaviors to reducing agents of hydrothermally grown α-Fe2O3 nanorods. Sensors and Actuators B: Chemical, 2018, 273, 1237-1245.	4.0	17
15	Transfer of CVD-grown graphene for room temperature gas sensors. Nanotechnology, 2017, 28, 414001.	1.3	30
16	Gas sensing applications of the inverse spinel zinc tin oxide. Materials Science in Semiconductor Processing, 2017, 71, 461-469.	1.9	10
17	Bottle-brush-shaped heterostructures of NiO–ZnO nanowires: growth study and sensing properties. Nanotechnology, 2017, 28, 465502.	1.3	10
18	ZnO and SnO <inf>2</inf> one-dimensional sensors for detection of hazardous gases. , 2017, , .		4

#	Article	IF	CITATIONS
19	Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy). Sensors, 2017, 17, 714.	2.1	126
20	Single Metal Oxide Nanowire devices for Ammonia and Other Gases Detection in Humid Atmosphere. Procedia Engineering, 2016, 168, 1052-1055.	1.2	10
21	Co/ZnO nanorods system for magnetic gas sensing applications. , 2016, , .		0
22	Magnetic gas sensing exploiting the magneto-optical Kerr effect on ZnO nanorods/Co layer system. RSC Advances, 2016, 6, 42517-42521.	1.7	17
23	New strategy for magnetic gas sensing. RSC Advances, 2016, 6, 83399-83405.	1.7	13
24	Compact hematite buffer layer as a promoter of nanorod photoanode performances. Scientific Reports, 2016, 6, 35049.	1.6	17
25	Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sensors and Actuators B: Chemical, 2016, 222, 1257-1263.	4.0	34
26	Vapour phase nucleation of ZnO nanowires on GaN: growth habit, interface study and optical properties. RSC Advances, 2016, 6, 15087-15093.	1.7	6
27	Graphene plasmon enhanced optical properties in ZnO micro-structures. , 2016, , .		0
28	Conductance and Work Function of TiO 2 Nanotubes Based Gas Sensors. Procedia Engineering, 2015, 120, 769-772.	1.2	5
29	Nanostructured ZnO chemical gas sensors. Ceramics International, 2015, 41, 14239-14244.	2.3	193
30	Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases. Thin Solid Films, 2015, 583, 233-238.	0.8	43
31	Fabrication of single-nanowire sensing devices by electron beam lithography. , 2015, , .		1
32	Large surface area biphase titania for chemical sensing. Sensors and Actuators B: Chemical, 2015, 209, 1091-1096.	4.0	26
33	Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode. Optics Express, 2015, 23, 18937.	1.7	15
34	Si <scp>OCN</scp> Functionalized Carbon Nanotube Gas Sensors for Elevated Temperature Applications. Journal of the American Ceramic Society, 2015, 98, 1142-1149.	1.9	16
35	Stoichiometry Gradient, Cation Interdiffusion, and Band Alignment between a Nanosized TiO ₂ Blocking Layer and a Transparent Conductive Oxide in Dye-Sensitized Solar Cell Front Contacts. ACS Applied Materials & Samp; Interfaces, 2015, 7, 765-773.	4.0	8
36	p-Type copper aluminum oxide thin films for gas-sensing applications. Sensors and Actuators B: Chemical, 2015, 209, 287-296.	4.0	40

3

#	Article	IF	CITATIONS
37	P-type CuO Nanowires and thin Film for Highly Sensitive Kelvin Probe Gas Sensing Applications. Procedia Engineering, 2014, 87, 16-19.	1.2	5
38	Two-phase Titania Nanotubes for Gas Sensing. Procedia Engineering, 2014, 87, 176-179.	1.2	8
39	Gas Sensing Study of ZnO Nanowire Heterostructured with NiO for Detection of Pollutant Gases. Procedia Engineering, 2014, 87, 1091-1094.	1.2	9
40	Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering. Thin Solid Films, 2014, 555, 18-20.	0.8	9
41	Tailoring and Characterization of Porous hierarchical Nanostructured p Type Thin Film of Cu-Al-Oxide for the Detection of Pollutant Gases. Procedia Engineering, 2014, 87, 252-255.	1.2	1
42	An ultrathin TiO2 blocking layer on Cd stannate as highly efficient front contact for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 16812.	1.3	21
43	Plasma-induced enhancement of UV photoluminescence in ZnO nanowires. CrystEngComm, 2013, 15, 7981.	1.3	27
44	Synthesis of self-assembled chain-like ZnO nanostructures on stiff and flexible substrates. CrystEngComm, 2013, 15, 2881.	1.3	22
45	Experimental apparatus for annihilation cross-section measurements of low energy antiprotons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 12-20.	0.7	25
46	Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors and Actuators B: Chemical, 2013, 179, 3-20.	4.0	153
47	Metal oxide nanowire chemical and biochemical sensors. Journal of Materials Research, 2013, 28, 2911-2931.	1.2	22
48	Growth and gas sensing properties of self-assembled chain-like ZnO nanostructures. , 2012, , .		1
49	Growth and Gas Sensing Properties of Self-Assembled Chain-Like ZnO Nanostructures. Procedia Engineering, 2012, 47, 762-765.	1.2	1
50	Metal Oxides Monoâ€Dimensional Nanostructures for Gas Sensing and Light Emission. Journal of the American Ceramic Society, 2012, 95, 831-850.	1.9	11
51	Sputtering deposition of amorphous cadmium stannate as transparent conducting oxide. Thin Solid Films, 2012, 520, 2739-2744.	0.8	11
52	The Power of Nanomaterial Approaches in Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, , 53-78.	0.5	0
53	High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires. Nanoscale Research Letters, 2011, 6, 501.	3.1	15
54	One-Dimensional Polyaniline Nanotubes for Enhanced Chemical and Biochemical Sensing. Lecture Notes in Electrical Engineering, 2011, , 311-315.	0.3	3

#	Article	IF	CITATIONS
55	Gas Influence on Photocurrent Generation in Metal Oxide Nanowires. Lecture Notes in Electrical Engineering, 2011, , 93-97.	0.3	O
56	Optical Gas Sensing Properties of ZnO Nanowires. Lecture Notes in Electrical Engineering, 2010, , $173-176$.	0.3	0
57	Integration of metal oxide nanowires in dye sensitized solar cells. , 2009, , .		0
58	SnO <inf>2</inf> nanowires for optical and optoelectronic gas sensing. , 2009, , .		1
59	Semiconducting tin oxide nanowires and thin films for Chemical Warfare Agents detection. Thin Solid Films, 2009, 517, 6156-6160.	0.8	46
60	Luminescence response of ZnO nanowires to gas adsorption. Sensors and Actuators B: Chemical, 2009, 140, 461-466.	4.0	65
61	Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progress in Materials Science, 2009, 54, 1-67.	16.0	582
62	Recombination dynamics of deep defect states in zinc oxide nanowires. Nanotechnology, 2009, 20, 175706.	1.3	36
63	Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sensors and Actuators B: Chemical, 2008, 130, 391-395.	4.0	27
64	Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sensors and Actuators B: Chemical, 2008, 130, 567-573.	4.0	40
65	Metal Oxide Nanowire and Thin-Film-Based Gas Sensors for Chemical Warfare Simulants Detection. IEEE Sensors Journal, 2008, 8, 735-742.	2.4	54
66	On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO ₂ adsorption. New Journal of Physics, 2008, 10, 043013.	1.2	57
67	Pd - AND Ca -DOPED IRON OXIDE FOR ETHANOL VAPOR SENSING., 2008, , .		0
68	ZnO nanocrystals by chemical route for optical gas sensing. , 2008, , .		8
69	Light Emission Properties of SnO ₂ Nanowires for Applications in Gas Sensing. Sensor Letters, 2008, 6, 596-600.	0.4	1
70	NEW NANOSTRUCTURES FOR GENOSENSING. , 2008, , .		0
71	Metal oxide nanowires for biochemical gas sensing. , 2007, , .		0
72	Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices. , 2007, , .		0

#	Article	IF	CITATIONS
73	Metal oxide nanowires for optical gas sensing. , 2007, 6474, 212.		1
74	Single crystal ZnO nanowires as optical and conductometric chemical sensor. Journal Physics D: Applied Physics, 2007, 40, 7255-7259.	1.3	82
75	SnO <inf>2</inf> nanowire bio-transistor for electrical DNA sensing., 2007,,.		1
76	Functionalized single-wall carbon nanotube-based gas sensor. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2007, 221, 17-21.	0.1	1
77	Pd- and Ca-doped iron oxide for ethanol vapor sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 41-47.	1.7	34
78	Synthesis and characterization of semiconducting nanowires for gas sensing. Sensors and Actuators B: Chemical, 2007, 121, 208-213.	4.0	163
79	Functionalized Single Wall Carbon Nanotubes Based Gas Sensor. , 2006, , .		10
80	Highly sensitive single crystalline metal oxide nanowires gas sensors. , 2006, , .		0
81	Investigation on Novel Poly (3-hexylthiophene)-ZnO Nanocomposite Thin Films Gas Sensor. , 2006, , .		2
82	Towards bio-nanotransistors for electrical DNA sensing. , 2006, , .		0
83	Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. Journal of Non-Crystalline Solids, 2006, 352, 1457-1460.	1.5	35
84	Iron-doped indium oxide by modified RGTO deposition for ozone sensing. Sensors and Actuators B: Chemical, 2006, 118, 221-225.	4.0	19
85	Room-temperature gas sensing based on visible photoluminescence properties of metal oxide nanobelts. Journal of Optics, 2006, 8, S585-S588.	1.5	32
86	SnO2 sub-micron wires for gas sensors. Microelectronic Engineering, 2005, 78-79, 178-184.	1.1	18
87	Monitoring plants health in greenhouse for space missions. Sensors and Actuators B: Chemical, 2005, 108, 278-284.	4.0	30
88	Metal oxide nanocrystals for gas sensing. Sensors and Actuators B: Chemical, 2005, 109, 2-6.	4.0	113
89	SnO[sub 2] lithographic processing for nanopatterned gas sensors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2784.	1.6	19
90	Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Applied Physics Letters, 2005, 86, 011923.	1.5	133

#	Article	IF	CITATIONS
91	CHECS (Closed Habitat Environmental Control Sensors)., 2004,,.		2
92	Sub-micron structured Metal Oxide gas sensors by means of lithographic techniques. Materials Research Society Symposia Proceedings, 2004, 828, 108.	0.1	0
93	Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors and Actuators B: Chemical, 2004, 100, 261-265.	4.0	159
94	Influence of metallic impurities on response kinetics in metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 2004, 103, 448-456.	4.0	12
95	Ozone adsorption on carbon nanotubes:Ab initiocalculations and experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1466-1470.	0.9	40
96	Multiparametric porous silicon gas sensors with improved quality and sensitivity. Physica Status Solidi A, 2003, 197, 523-527.	1.7	32
97	Surface photovoltage studies of porous silicon in presence of polluting gases: toward a selective gas sensor., 2003, 5222, 12.		0
98	Selective semiconductor gas sensor based on surface photovoltage., 2002,,.		3
99	THIN FILMS OF ALUMINUM/VANADIUM OXIDE FOR ORGANIC VAPOURS SENSING. , 2002, , .		0
100	Multiparametric Porous Silicon Sensors. Sensors, 2002, 2, 121-126.	2.1	81
101	A Porous Silicon Microcavity as an Optical and Electrical Multipatrametric Chemical Sensor. , 2002, , 399-412.		0
102	Front-side micromachined porous silicon nitrogen dioxide gas sensor. Thin Solid Films, 2001, 391, 261-264.	0.8	59
103	A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors and Actuators B: Chemical, 2001, 77, 62-66.	4.0	102
104	Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. Applied Physics Letters, 2001, 78, 3744-3746.	1.5	29
105	Towards a Deeper Comprehension of the Interaction Mechanisms between Mesoporous Silicon and NO2. Physica Status Solidi A, 2000, 182, 465-471.	1.7	14
106	Fabrication and Characterization of a Sensing Device Based on Porous Silicon. Physica Status Solidi A, 2000, 182, 473-477.	1.7	31
107	NO2 monitoring at room temperature by a porous silicon gas sensor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 210-214.	1.7	126
108	Gas detection with a porous silicon based sensor. Sensors and Actuators B: Chemical, 2000, 65, 257-259.	4.0	57

#	Article	IF	CITATIONS
109	Gold-catalysed porous silicon for NOx sensing. Sensors and Actuators B: Chemical, 2000, 68, 74-80.	4.0	46
110	Multiparametric sensor for air pollutants based on a porous silicon optical microcavity. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	2
111	Sol-Gel Preparation of α-Fe2O3 Thin Films: Structural Characterization by XAFS and Raman. Journal of Sol-Gel Science and Technology, 1998, 13, 667-671.	1.1	75
112	Fe2O3 films for Ξ(3) optics: Raman and XAS characterization. Optical Materials, 1998, 9, 368-372.	1.7	28
113	Thin films for nonlinear optics: sol-gel preparation, Raman and XAS characterization of \hat{l}_{\pm} -Fe 2 O 3. , 1998, 3359, 334.		1
114	Multiparametric gas sensors with porous silicon optical microcavities., 0,,.		0
115	Ozone reactivity with carbon nanotubes: experimental and theoretical studies. , 0, , .		2
116	Mixed In/Fe oxide thin films for ppb-level ozone sensing. , 0, , .		0
117	Metal oxide nanocrystals for gas sensing. , 0, , .		451
118	Inverse Opal Structure of SnO2 and SnO2: Zn for Gas Sensing. , 0, , .		1