Jianyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8679376/publications.pdf Version: 2024-02-01

ΙΙΔΝΥΠ ΖΗΔΝΟ

#	Article	IF	CITATIONS
1	Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Composite Structures, 2014, 116, 509-522.	5.8	157
2	Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon, 2015, 91, 224-233.	10.3	123
3	Strengthening effects of twin interface in Cu/Ni multilayer thin films – A molecular dynamics study. Materials and Design, 2016, 111, 1-8.	7.0	79
4	Delamination propagation criterion including the effect of fiber bridging for mixed-mode I/II delamination in CFRP multidirectional laminates. Composites Science and Technology, 2017, 151, 302-309.	7.8	76
5	Stiffness threshold of randomly distributed carbon nanotube networks. Journal of the Mechanics and Physics of Solids, 2015, 84, 395-423.	4.8	75
6	XFEM simulation of delamination in composite laminates. Composites Part A: Applied Science and Manufacturing, 2016, 80, 61-71.	7.6	75
7	A modified mode I cohesive zone model for the delamination growth in DCB laminates with the effect of fiber bridging. International Journal of Mechanical Sciences, 2020, 176, 105514.	6.7	71
8	Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon, 2017, 115, 694-700.	10.3	68
9	Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading. International Journal of Fatigue, 2012, 40, 7-15.	5.7	61
10	Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks. Ultrasonics, 2017, 79, 60-67.	3.9	60
11	Fastener effects on mechanical behaviors of double-lap composite joints. Composite Structures, 2013, 100, 413-423.	5.8	58
12	A progressive damage analysis based characteristic length method for multi-bolt composite joints. Composite Structures, 2014, 108, 915-923.	5.8	56
13	R-curve behaviour of the mixed-mode I/II delamination in carbon/epoxy laminates with unidirectional and multidirectional interfaces. Composite Structures, 2019, 223, 110949.	5.8	54
14	Failure prediction of out-of-plane woven composite joints using cohesive element. Composite Structures, 2013, 106, 407-416.	5.8	52
15	The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Advances, 2016, 6, 66658-66664.	3.6	50
16	A novel four-linear cohesive law for the delamination simulation in composite DCB laminates. Composites Part B: Engineering, 2020, 180, 107526.	12.0	50
17	A modified failure envelope method for failure prediction of multi-bolt composite joints. Composites Science and Technology, 2013, 83, 54-63.	7.8	49
18	An interface-dependent model of plateau fracture toughness in multidirectional CFRP laminates under mode I loading. Composites Part B: Engineering, 2017, 131, 196-208.	12.0	49

#	Article	IF	CITATIONS
19	XFEM-based model for simulating zigzag delamination growth in laminated composites under mode I loading. Composite Structures, 2017, 160, 1155-1162.	5.8	48
20	Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Composite Structures, 2015, 124, 292-299.	5.8	45
21	Delamination in carbon fiber epoxy DCB laminates with different stacking sequences: R-curve behavior and bridging traction-separation relation. Composite Structures, 2021, 262, 113605.	5.8	44
22	A novel characteristic curve for failure prediction of multi-bolt composite joints. Composite Structures, 2014, 108, 129-136.	5.8	43
23	Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness. Composite Structures, 2015, 122, 496-506.	5.8	43
24	An analytical joint stiffness model for load transfer analysis in highly torqued multi-bolt composite joints with clearances. Composite Structures, 2015, 131, 625-636.	5.8	42
25	A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates. Composite Structures, 2018, 201, 995-1003.	5.8	42
26	Creep–fatigue crack growth behaviour of a nickel-based powder metallurgy superalloy under high temperature. Engineering Failure Analysis, 2011, 18, 1058-1066.	4.0	40
27	An improved power law criterion for the delamination propagation with the effect of large-scale fiber bridging in composite multidirectional laminates. Composite Structures, 2018, 184, 961-968.	5.8	40
28	An interpretation of the load distributions in highly torqued single-lap composite bolted joints with bolt-hole clearances. Composites Part B: Engineering, 2018, 138, 194-205.	12.0	40
29	A progressive failure analysis model for composite structures in hygrothermal environments. Composite Structures, 2015, 133, 331-342.	5.8	39
30	A probabilistic model for strength analysis of composite double-lap single-bolt joints. Composite Structures, 2017, 161, 419-427.	5.8	37
31	A progressive fatigue damage model for composite structures in hygrothermal environments. International Journal of Fatigue, 2018, 111, 299-307.	5.7	37
32	Strength Prediction of Composite Î Joints Under Tensile Load. Journal of Composite Materials, 2010, 44, 2759-2778.	2.4	36
33	A novel interpretation of fatigue delamination growth behavior in CFRP multidirectional laminates. Composites Science and Technology, 2016, 133, 79-88.	7.8	36
34	Crack growth behaviour of a nickel-based powder metallurgy superalloy under elevated temperature. International Journal of Fatigue, 2011, 33, 632-641.	5.7	34
35	A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. Journal of Nanomaterials, 2014, 2014, 1-9.	2.7	34
36	A micromechanics-based degradation model for composite progressive damage analysis. Journal of Composite Materials, 2016, 50, 2271-2287.	2.4	34

#	Article	IF	CITATIONS
37	Probabilistic bolt load distribution analysis of composite single-lap multi-bolt joints considering random bolt-hole clearances and tightening torques. Composite Structures, 2018, 194, 12-20.	5.8	34
38	A novel material degradation model for unidirectional CFRP composites. Composites Part B: Engineering, 2018, 135, 84-94.	12.0	34
39	Modified maximum stress failure criterion for composite π joints. Journal of Composite Materials, 2013, 47, 2995-3008.	2.4	33
40	An improved 2D finite element model for bolt load distribution analysis of composite multi-bolt single-lap joints. Composite Structures, 2020, 253, 112770.	5.8	33
41	High cycle fatigue and fracture mode analysis of 2A12–T4 aluminum alloy under out-of-phase axial–torsion constant amplitude loading. International Journal of Fatigue, 2012, 38, 144-154.	5.7	31
42	Revealing the competitive fatigue failure behaviour of CFRP-aluminum two-bolt, double-lap joints. Composite Structures, 2020, 244, 112166.	5.8	31
43	Strength prediction of composite ï€ joint under bending load and study of geometric and material variations effects. Journal of Composite Materials, 2013, 47, 1029-1038.	2.4	28
44	Three-dimensional progressive damage models for cohesively bonded composite π joint. Journal of Composite Materials, 2014, 48, 707-721.	2.4	28
45	Secondary bending effects in progressively damaged single-lap, single-bolt composite joints. Results in Physics, 2016, 6, 704-711.	4.1	28
46	Tension–torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios. International Journal of Fatigue, 2011, 33, 1066-1074.	5.7	27
47	A residual strain model for progressive fatigue damage analysis of composite structures. Composite Structures, 2017, 169, 69-78.	5.8	26
48	A novel model for determining the fatigue delamination resistance in composite laminates from a viewpoint of energy. Composites Science and Technology, 2018, 167, 489-496.	7.8	26
49	A failure-envelope-based method for the probabilistic failure prediction of composite multi-bolt double-lap joints. Composites Part B: Engineering, 2019, 172, 593-602.	12.0	26
50	Investigation of bolt load redistribution and its effect on failure prediction in double-lap, multi-bolt composite joints. Composite Structures, 2018, 202, 397-405.	5.8	25
51	Experimental and numerical investigations on the mode I delamination growth behavior of laminated composites with different z-pin fiber reinforcements. Composite Structures, 2022, 287, 115370.	5.8	25
52	Mixed mode delamination growth of multidirectional composite laminates under fatigue loading. Engineering Fracture Mechanics, 2012, 96, 676-686.	4.3	24
53	A creep–fatigue crack growth model containing temperature and interactive effects. International Journal of Fatigue, 2014, 59, 34-42.	5.7	24
54	Influence of end distances on the failure of composite bolted joints. Journal of Reinforced Plastics and Composites, 2015, 34, 388-404.	3.1	24

#	Article	IF	CITATIONS
55	Anomalous Nernst effect in Ir22Mn78/Co20Fe60B20/MgO layers with perpendicular magnetic anisotropy. Applied Physics Letters, 2017, 111, .	3.3	24
56	An analytical model for evaluating the buckling, delamination propagation, and failure behaviors of delaminated composites under uniaxial compression. Composite Structures, 2019, 223, 110937.	5.8	24
57	Compressive fatigue behavior of low velocity impacted and quasi-static indented CFRP laminates. Composite Structures, 2015, 133, 1009-1015.	5.8	23
58	A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension. Applied Composite Materials, 2016, 23, 255-269.	2.5	23
59	A progressive failure analysis of all-C/SiC composite multi-bolt joints. Composite Structures, 2018, 202, 1059-1068.	5.8	23
60	A simple procedure for determining the mode I bridging stress of composite DCB laminates without measuring the crack opening displacement. Composite Structures, 2020, 243, 112147.	5.8	23
61	Effects of debonding defects on the postbuckling and failure behaviors of composite stiffened panel under uniaxial compression. Composite Structures, 2021, 256, 113121.	5.8	22
62	A modified stiffness method considering effects of hole tensile deformation on bolt load distribution in multi-bolt composite joints. Composites Part B: Engineering, 2019, 171, 264-271.	12.0	21
63	Investigation on characteristic length testing methods for failure prediction of composite multi-bolt joints. Journal of Reinforced Plastics and Composites, 2015, 34, 636-648.	3.1	20
64	Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading. International Journal of Fatigue, 2019, 122, 240-255.	5.7	20
65	An R-curve effect-included delamination growth criterion for mixed-mode I/II delamination predictions of composite laminates. Composite Structures, 2022, 295, 115846.	5.8	20
66	Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy. International Journal of Fatigue, 2014, 67, 173-182.	5.7	19
67	Mode-II interlaminar fracture toughness of GFRP/Al laminates improved by surface modified VGCF interleaves. Composites Part B: Engineering, 2017, 114, 365-372.	12.0	19
68	Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites. Scientific Reports, 2017, 7, 14700.	3.3	18
69	A micromechanical model for longitudinal compressive failure in unidirectional fiber reinforced composite. Results in Physics, 2018, 10, 841-848.	4.1	18
70	Influence of π overlaminates on the mechanical behavior of all-composite adhesively bonded π joints. Journal of Reinforced Plastics and Composites, 2014, 33, 923-934.	3.1	17
71	Determination method of stress concentration relief factors for failure prediction of composite multi-bolt joints. Journal of Composite Materials, 2015, 49, 1667-1680.	2.4	17
72	A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding. Results in Physics, 2019, 13, 102205.	4.1	17

#	Article	IF	CITATIONS
73	A bi-material property based FE modelling method for progressive damage analyses of composite double-lap bolted joints. Results in Physics, 2018, 11, 674-683.	4.1	16
74	An insight into three approaches for determining fatigue delamination resistance in DCB tests on composite laminates. Composites Part B: Engineering, 2019, 176, 107206.	12.0	16
75	Simulations on Monitoring and Evaluation of Plasticity-Driven Material Damage Based on Second Harmonic of S0 Mode Lamb Waves in Metallic Plates. Materials, 2017, 10, 827.	2.9	15
76	An extended analytical model for predicting the compressive failure behaviors of composite laminate with an arbitrary elliptical delamination. International Journal of Solids and Structures, 2020, 185-186, 439-447.	2.7	15
77	Multiaxial high-cycle fatigue failure of 30CrMnSiA steel with mean tension stress and mean shear stress. International Journal of Fatigue, 2019, 129, 105219.	5.7	14
78	An enhanced beam theory based semi-analytical method to determine the DCB mode I bridging-traction law. Composite Structures, 2020, 245, 112306.	5.8	14
79	Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads. Composite Structures, 2021, 255, 112977.	5.8	14
80	Design and analysis of a novel bolted composite π joint under bending load. Materials and Design, 2016, 98, 201-208.	7.0	13
81	Development of a standardized test procedure and an improved data reduction method for the mixed-mode I/II delamination in composite laminates. Composites Science and Technology, 2021, 201, 108488.	7.8	12
82	Crack closure in the fatigue delamination of composite multidirectional DCB laminates with large-scale fiber bridging. Composite Structures, 2020, 244, 112220.	5.8	11
83	A probabilistic estimation method of multiple site damage occurrence for aircraft structures. Procedia Engineering, 2010, 2, 1115-1124.	1.2	10
84	Fatigue crack growth measurement in a superalloy at elevated temperature. International Journal of Fatigue, 2013, 47, 189-195.	5.7	10
85	Carbon Nanotube Reinforced Composites: The Smaller Diameter, the Higher Fracture Toughness?. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	10
86	Parameter studies and evaluation principles of delamination damage in laminated composites. Chinese Journal of Aeronautics, 2021, 34, 62-72.	5.3	9
87	Failure Analysis of Woven Composite Joint Under Bending Load. Advanced Science Letters, 2011, 4, 2752-2758.	0.2	8
88	Independent scattering model for evaluating antiplane shear wave attenuation in fiber-reinforced composite materials. Ultrasonics, 2017, 78, 185-194.	3.9	7
89	Size effect on interlayer shear between graphene sheets. Journal of Applied Physics, 2017, 122, .	2.5	7
90	An Efficient Algorithm Embedded in an Ultrasonic Visualization Technique for Damage Inspection Using the AE Sensor Excitation Method. Sensors, 2014, 14, 20439-20450.	3.8	6

#	Article	IF	CITATIONS
91	Conductive PVDF-HFP/CNT composites for strain sensing. Functional Materials Letters, 2016, 09, 1650024.	1.2	6
92	Uncertainty evaluation for bearing fatigue property of CFRP double-lap, single-bolt joints. Chinese Journal of Aeronautics, 2022, 35, 250-258.	5.3	6
93	Enhancement of energy harvesting capability using PVDF/GFRP-laminated films. Journal of Sandwich Structures and Materials, 2019, 21, 2548-2562.	3.5	5
94	A sectional critical plane model for multiaxial high ycle fatigue life prediction. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 689-704.	3.4	5
95	An efficient semi-analytical method to study the mode I bridging-traction law of composite laminates. Composite Structures, 2021, 271, 114060.	5.8	5
96	Crack growth path of 30CrMnSiA steel under variable amplitude multiaxial loading. International Journal of Fatigue, 2021, 153, 106502.	5.7	5
97	3D Gradual Material Degradation Model for Progressive Damage Analyses of Unidirectional Composite Materials. Mathematical Problems in Engineering, 2015, 2015, 1-11.	1.1	4
98	An average failure index method for the tensile strength prediction of composite adhesive-bonded π joints. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 292-301.	1.0	4
99	A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints. Medziagotyra, 2014, 20, .	0.2	2
100	Study of methods for evaluating the probability of multiple site damage occurrences. Science China: Physics, Mechanics and Astronomy, 2014, 57, 65-73.	5.1	2
101	Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel. Materials, 2021, 14, 3968.	2.9	2